• 제목/요약/키워드: Bipolar plate Current density distribution

검색결과 10건 처리시간 0.027초

분리판 분할을 통만 연료전지의 전류분포 측정법에 대한 수치적 검증 (Computational Justification of Current Distribution Measurement Technique Via Segmenting Bipolar Plate in Fuel Cells)

  • 최용준;이기용;강경문;김환기;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제21권1호
    • /
    • pp.1-11
    • /
    • 2010
  • Current distribution measurement technique based on a segmented bipolar plate (BP) has been widely adopted to visualize the distribution of current density in a polymer electrolyte membrane. However, a concern is raised how closely the current density of a segmented BP can approach that of a corresponding non-segmented membrane. Therefore, in this paper, the accuracy of the measurement technique is numerically evaluated by applying a three-dimensional, two-phase fuel cell model to a $100\;cm^2$ area fuel cell geometry in which segmented BPs and non-segmented membrane are combined together. The simulation results reveal that the errors between the current densities of the segmented BPs and non-segmented membrane indeed exist, predicting the maximum relative error of 33% near the U-turn regions of the flow-field. The numerical study further illustrates that the erroneous result originates from the BPs segmented non-symmetrically based on the flow channels that allows some currents bypassing flow channels to flow into its neighboring segment. Finally, this paper suggests the optimal way for bipolar plate segmentation that can minimize the deviation of current measured in a segmented BP from that of a corresponding membrane region.

PEMFC 시스템용 바이폴라 플레이트의 디자인에 관한 연구 (A Study on a Design of Bipolar Plate for PEMFC System)

  • 윤형상;차인수;이정일;윤정필
    • 신재생에너지
    • /
    • 제4권1호
    • /
    • pp.5-10
    • /
    • 2008
  • Hydrogen fuel cell is clean and efficient technology along with high energy densities. While there are many different types of fuel cells, the proton exchange membrane fuel cell stands out as one of the most promising for transportation and small stationary applications. This paper focuses on design of bipolar plate for proton exchange membrane fuel cell. The bipolar plate model is realistically and accurately simulated velocity distribution, current density distribution and its effect on the PEMFC system using CFD tool FLUENT.

  • PDF

고분자 전해질 연료전지용 바이폴라 플레이트의 디자인에 관한 고찰 (A Study on the design of bipolar plate for proton exchange membrane fuel cell)

  • 윤정필;최장균;차인수;임중열
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2007
  • Hydrogen fuel cell is clean and efficient technology along with high energy densities. While there are many different types of fuel cells, the proton exchange membrane fuel cell stands out as one of the most promising for transportation and small stationary applications. This paper focuses on design of bipolar plate for proton exchange membrane fuel cell. The bipolar plate model is realistically and accurately simulated velocity distribution, current density distribution and its effect on the PEMFC system using CFD tool FLUENT.

  • PDF

열전달 및 열하중을 고려한 자동차 연료전지(PEMFC) 분리판의 두께 최적설계 (Optimization of Automotive PEMFC Bipolar Plates considering Heat Transfer and Thermal Loads)

  • 김영성;김철
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.34-40
    • /
    • 2015
  • A stack in the proton exchange membrane fuel cell (PEMFC) consists of bipolar plates, a membrane electrode assembly, a gas diffusion layer, a collector and end plates. High current density is usually obtainable partially from uniform temperature distribution in the fuel cell. A size optimization method considering the thermal expansion effect of stacked plates was developed on the basis of finite element analyses. The thermal stresses in end, bipolar, and cooling plates were calculated based on temperature distribution obtained from thermal analyses. Finally, the optimization method was applied and optimum thicknesses of the three plates were calculated considering both fastening bolt tension and thermal expansion of each unit cell (72 cells, 5kW). The optimum design considering both thermal and mechanical loads increases the thickness of an end plate by 0.64-0.83% the case considering only mechanical load. The effect can be enlarged if the number of stack increases as in an automotive application to 200-300 stacks.

An Empirical Study about the Segmented Cell in Anode Side of PEMFC

  • 김재호;손영준;김민진;박구곤;임성대
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 2009
  • The present study focused on the segmented cell which has the similar performance to unaltered (not segmented) cell in real operating condition. Many literatures have been made the segmented cell to observe the behavior of local current density distribution in the single cell. However, it has been lack of scheme to segment the cell in that the detailed interpretation of segmenting in analytic point of view was insufficient. Hence, the basic idea of segmenting was introduced to determine the component to be segmented in anode side of unit cell. The electrical contact/bulk resistance was measured by using four wire/probe method through each part of cell components including MEA, GDL, Bipolar Plate and Current Collector. Electron transport mechanism was predicted by comparing resistance values which were obtained from the experiment. As a result, this offered a great benefit to segment the cell efficiently. With this method further experiments would be conducted in research areas which require current density distribution at the same operating condition as unaltered cell.

  • PDF

가스확산층을 통과하는 반응가스 우회유동이 고분자 연로전지의 성능에 미치는 영향 (The Effect of a Bypass Flow Penetrating through a Gas Diffusion Layer on Performance of a PEM Fuel Cell)

  • 조중원;안은진;이승보;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.147-151
    • /
    • 2007
  • A serpentine channel geometry often used in a polymer electrolyte membrane fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with relatively high aspect ratio active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compression conditions. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds to that of dropwise condensation in cathode channels.

  • PDF

사행유로를 갖는 고분자연료전지내부에서 가스확산층을 통과하는 반응가스 우회유동에 대한 연구 (A Study on the Bypass Flow Penetrating Through a Gas Diffusion Layer in a PEM Fuel Cell with Serpentine Flow Channels)

  • 조중원;안은진;이승보;윤영기;이원용
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.288-297
    • /
    • 2009
  • A serpentine channel geometry often used in a fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from the intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with high aspect ratio of active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compressive forces. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds that of dropwise condensation in cathode channels.

운전 조건에 따른 PEM 연료전지 모델링 및 성능 분석 (Modeling and parametric studies of PEM fuel cell performance)

  • 노영우;김세훈;정귀성;손익제;한국일;안병기
    • 한국수소및신에너지학회논문집
    • /
    • 제19권3호
    • /
    • pp.209-216
    • /
    • 2008
  • In the present study, a mathematical model has been formulated for the performance of polymer electrolyte fuel cells. Modify the concentration polarization equation using concentration coefficient that represents the characteristics of bipolar plate reactant distribution. The model predictions have been compared with experimental results and good agreement has been demonstrated for the cell polarization curves. The effects of operating parameters on the performance of fuel cells have been studied. Increases of operation pressure reduce the effect of temperature on the performance.

In-Situ 분석법에 의한 연료전지 특성 연구 (PEMFC Characterization Study by in-situ Analysis Method)

  • 김영민;이종현;임세준;안병기;임태원
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.208-215
    • /
    • 2009
  • PEMFC stack power output is needed to be around 100 kW to meet the requirements of automotive application and scaling-up the active area of the stack cells will allow a higher power. In the case of scaling-up the active area of cells, it is difficult to obtain uniform in-plane internal conditions such as temperature, relative humidity and stoichiometry of the feed gas. These ununiformity with the location in the cell would affect both the performance and durability of the stack, so it is important to understand phenomena in the cell for improving them. In this study, the current density, electrochemical resistance and performance distribution measurement was performed to understand the ununiformity in a single cell using in-situ method; (1) Current Density Distribution (CDD) Device and (2) Segmented Cell Fixture. The influence of location of feed gas on the performance of a single cell was experimentally measured and discussed by using a segmented single cell which was composed of 8 compartments. The correlation between the location and performance in a single cell was discussed by these two tools and it was extended between the local characterization and the durability in a MEA by comparing the used cell with a fresh one. It was also studied in terms of electrochemistry by Electrochemical Impedance Spectroscopy.

냉각채널 열관리에 따른 고분자연료전지의 성능영향 연구 (Thermal managing effects by cooling channels on performance of a PEMFC)

  • 손영준;김민진;박구곤;김경연;이원용
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.373-373
    • /
    • 2009
  • Relative humidity, membrane conductivity and water activity are critical parameters of polymer electrolyte membrane fuel cells (PEMFC) for high performance and reliability. These parameters are closely related with temperature. Moreover, the ideal values of these parameters are not always identical along the channels. Therefore, the cooling channel design and its operating condition should be well optimized along the all location of the channels. In the present study, we have performed a numerical investigation on the effects of cooling channels on performance of a PEMFC. Three-dimensional Navier-Stokes equations are solved with the energy equation including heat generated by the electrochemical reactions in the fuel cell. The present numerical model includes the gas diffusion layers (GDL) and serpentine channels for both anode and cathode gas flows, as well as cooling channels. To accurately predict the water transport across the membrane, the distribution of water content in the membrane is calculated by solving a nonlinear differential equation with a nonlinear coefficient, i.e., the water diffusivity which is a function of water content as well as temperature. Main emphasis is placed on the heat transfer between the solid bipolar plate and coolant flow. The present results show that local current density is affected by cooling channels due to the change of the oxygen concentration and the membrane conductivity as well as the water content. It is also found that the relative humidity is influenced by the generated water and the gas temperature and thus it affects the distribution of fuel concentration and the conductivity of the membrane, ultimately fuel cell performance. Unit-cell experiments are also carried out to validate the numerical models. The performance curves between the models and experiments show reasonable results.

  • PDF