• 제목/요약/키워드: Biphone

검색결과 7건 처리시간 0.019초

한국어 음성 인식용 biphone 구성을 위한 기초 연구 (The Basic Study on making biphone for Korean Speech Recognition)

  • 황영수;송민석
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.99-102
    • /
    • 2000
  • In the case of making large vocabulary speech recognition system, it is better to use the segment than the syllable or the word as the recognition unit. In this paper, we study on the basis of making biphone for Korean speech recognition. For experiments, we use the speech toolkit of OGI in U.S.A. The result shows that the recognition rate of the case in which the diphthong is established as a single unit is superior to that of the case in which the diphthong Is established as two units, i.e. a glide plus a vowel. And also, the recognition rate of the case in which the biphone is used as the recognition unit is better than that of the case in which the mono-phoneme is used.

  • PDF

한국어 분절음 인식을 위한 인식 단위에 대한 연구 (A Study on Recognition Units for Korean Speech Recognition)

  • 황영수;송민석
    • 한국음향학회지
    • /
    • 제19권6호
    • /
    • pp.47-52
    • /
    • 2000
  • 본 연구는 한국어 분절음 인식을 위한 인식단위 설정에 대한 연구이다. 대용량 음성 인식을 수행할 경우, 표준 패턴의 인식 단위를 단어나 음절이 아닌 분절음 단위로 사용하여야 효율적인 음성 인식을 수행할 수 있다. 본 연구는 이와 같은 분절음 인식을 수행하기 위한 연구로서, 인식 단위 설정 변화에 따른 인식 결과를 미국 OGI 연구소의 speech toolkit을 이용하여 검토한다. 인식 단위에 관해서 특히 모음의 경우 철자에 기초한 음소별 인식단위 설정과 현대어 발음에 기초한 인식단위 설정을 비교했으며, 그 결과 발음에 기초해 몇 개의 모음을 통합한 경우가 더 우수한 결과를 보였다. 또한 인식단위의 설정에 있어서 독려된 분절음으로 설정한 경우보다 앞, 뒤의 소리의 상황을 고려한 바이폰(biphone)을 이용할 경우가 5.7%-25.9%의 향상된 인식 결과를 보였다. 인식 방법에 있어서는 HMM 만을 이용한 방법보다 신경회로망과 HMM을 결합한 인식 방법이 6.1%-7.5%의 더 좋은 인식률을 나타내었다.

  • PDF

한국어 음소결합확률 계산기 개발연구 (A Study of Development for Korean Phonotactic Probability Calculator)

  • 이찬종;이현복;최훈영
    • 한국음향학회지
    • /
    • 제28권3호
    • /
    • pp.239-244
    • /
    • 2009
  • 본 연구는 현대 한국어 단어의 말소리가 결합하는 음소결합확률 (Phonotactic Probability)을 예측하는 계산기 엔진 개발에 관한 연구이다. 한국어 음소결합확률계산기 (이하, KPPC)는 첫째로, 한국어의 주어진 단어에서의 음소와 그 음소의 음소결합의 빈도를 예측하여 말소리가 단어내의 특정위치에서 특정 분절음이 나타나는 빈도 값, 두 음소간의 결합의 빈도값, 그리고 세 음소간의 결합의 빈도 출현률을 예측하여 계산한다. 둘째로 한국어의 주어진 단어에서 말소리 하나만 다르면서 실제로 존재할 수 있는 근접밀도 (neighborhood density)의 값을 계산한다. University of Kansas에서 개발된 음소결합계산기는 영어 20,000단어의 D/B를 대상으로 위치별 분절음빈도와 두 음소간의 음소결합률 빈도를 컴퓨터가 읽을 수 있는 발음기호를 통해서만 가능하다. 본 연구에서는 분절음빈도와 두 음소간의 빈도뿐만 아니라 세 음소간의 결합률 빈도와 근접밀도율을 예측할 수 있고 입력할 때 발음기호뿐만 아니라 단어를 입력하면 확률값을 얻을 수 있다. 이 엔진은 67,284단어의 한국어 표준발음을 D/B로 구축하여 고빈도 음소결합확률, 저빈도 음소결합확률, 고빈도 근접밀도, 저빈도 근접밀도의 값을 예측할 수 있다.

한국어 어휘 인식을 위한 혼합형 음성 인식 단위 (Monophone and Biphone Compuond Unit for Korean Vocabulary Speech Recognition)

  • 이기정;이상운;홍재근
    • 한국컴퓨터산업학회논문지
    • /
    • 제2권6호
    • /
    • pp.867-874
    • /
    • 2001
  • 본 논문에서는 한국어의 발음 특성을 고려하여 인식시간 단축과 동시에 조음현상을 반영할 수 있는 인식단위 표현법을 제안하였다. 제안한 인식단위는 단음소(monophone)와 바이폰(biphone)의 혼합형으로서, 단음소 단위는 안정적인 특성을 나타내는 모음에 적용되고 바이폰 단위는 인접한 모음에 의해 변하는 자음에 적용된다. PBW455 데이터베이스에 대한 단어인식 실험에서 혼합형 단위표현법은 트라이폰 단위에 비해 비슷한 인식률을 나타내면서 57%의 인식시간 단축효과를 나타냈고, 음절 단위에 비해 향상된 인식률과 비슷한 인식시간을 나타내었다. 또한 트라이폰 및 음절 단위보다 적은 모델 수를 가져 메모리 양을 줄일 수 있었다.

  • PDF

Sub-word 단위 HMM을 이용한 한국어 대용량 어휘 인식 (Large Vocabulary Speech Recognition Using Sub-word Unit HMM)

  • 김홍수;이상운;이건웅;홍재근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.167-170
    • /
    • 2000
  • 일반적인 한국어 대용량 어휘인식에 사용되는 triphone 모델은 한국어의 특성을 잘 표현한다는 장점이 있으나 인식시간이 길어지게 된다. 이러한 triphone 모델의 단점을 극복하기 위해 음절단위 HMM 모델을 사용하는 방법이 있는데 이 모델은 인식시간을 줄일 수 있으나 triphone 모델에 비해서 인식률이 낮다. 본 논문에서는 음성 인식시간을 단축시키고 조음현상을 고려하기 위하여 초성과 종성 자음은 각각의 biphones으로 나타내고 중성 모음은 1개의 monophone으로 나타내는 모델을 제안하였다. PBW445 음성 데이터베이스에 대한 실험결과, 제안한 인식모델이 triphone 모델에 가까운 인식률을 나타내었으며, 인식시간을 크게 단축하였다.

  • PDF

The Study on Korean Phoneme for Korean Speech Recogintion

  • Hwang, Young-Soo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.629-632
    • /
    • 2000
  • In this paper, we studied on the phoneme classification for Korean speech recognition. In the case of making large vocabulary speech recognition system, it is better to use phoneme than syllable or word as recognition unit. And, In order to study the difference of speech recognition according to the number of phoneme as recognition unit, we used the speech toolkit of OGI in U.S.A as recognition system. The result showed that the performance of diphthong being unified was better than that of seperated diphthongs, and we required the better result when we used the biphone than when using mono-phone as recognition unit.

  • PDF

한국어 인식을 위한 인식 단위와 학습 데이터 분류 방법에 대한 연구 (A Study on Recognition Units and Methods to Align Training Data for Korean Speech Recognition))

  • 황영수
    • 융합신호처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.40-45
    • /
    • 2003
  • 본 연구는 한국어 분절음 인식을 위한 인식 단위 설정과 학습시 학습 데이터 분할 방법에 대한 연구이다 대용량 음성 인식을 수행할 경우, 표준 패턴의 인식 단위를 단어나 음절이 아닌 분절음 단위로 사용하여야 효율적인 음성 인식을 수행할 수 있다. 본 연구는 이와 같은 분절음 인식을 수행하기 위한 연구로서, 인식 단위 설정 변화와 학습시 학습 데이터 분할 방법에 따른 인식 결과를 미국 OGI 연구소의 speech toolkit을 이용하여 검토한다. 인식 단위에 관해서 특히 모음의 경우 철자에 기초한 음소별 인식 단위 설정과 현대어 발음에 기초한 인식 단위 설정을 비교했으며, 그 결과 발음에 기초해 몇 개의 모음을 통합한 경우가 더 우수한 결과를 보였으며, 학습 데이터 분할 방법에 따른 인식 결과는 손으로 분할한 방법이 자동 분할 방법보다 약 2-3%의 인식 향상을 보였다. 또한 인식 단위의 설정에 있어서 독립된 분절음으로 설정한 경우보다 앞, 뒤의 소리의 상황을 고려한 바이폰(bipbone)을 이용할 경우가 5.7%-25.9%의 향상된 인식 결과를 보였다 인식 방법에 있어서는 HMM 만을 이용한 방법보다 신경회로망과 HMM을 결합한 인식 방법이 6.1%-7.5%의 더 좋은 인식률을 나타내었다.

  • PDF