• Title/Summary/Keyword: Biped Walking Robot

Search Result 212, Processing Time 0.027 seconds

Dynamic Trajectory Control of a Biped Robot with Curved Soles

  • Yeon, Je-Sung;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.225-230
    • /
    • 2003
  • This paper proposes a desired trajectory and a control algorithm for a biped robot with curved soles. Firstly, we derived the desired trajectory from a model called the Moving Inverted Pendulum Mode (MIPM) of which a contact point of the foot is moving in the horizontal direction. A biped robot with curved soles is under-actuated system, because it has one contact point with the ground during the single supporting phase. Therefore, to solve the under-actuated problem, we changed control variables, used modified dynamic equations and used the computed torque control. The simulation results show that a biped robot with curved soles walks stably. Also, fast walking and natural motion of a biped robot can be implemented.

  • PDF

Stable Walking for an Inverted Pendulum Type Biped Robot (도립 진자형 이족보행로봇을 위한 안정보행)

  • Kang, Chan-Su;Noh, Kyung-Kon;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.456-459
    • /
    • 2003
  • This paper deal with the biped walking stability by inverted pendulum type balancing joints. This model is hard to interpretation for the nonlinearity caused by upper direction movement then conventional model which have roll and prismatic joints. We can interpret this model by a linear approximation or interpolation method. This paper use a linear approximation method that can decide a movement of upper direction. Inverted pendulum type balancing joints have a advantage of less movement for keep stability and similar with human than conventional model and this model can be used for humanoid robot. We can see a stability of biped by ZMP(Zero Moment Point). Genetic algorithm is used for trajectory planning that is important for stable walking of biped.

  • PDF

Control of balancing weight for IWR biped robot by genetic algorithm (유전 알고리즘을 이용한 IWR 이족 보행 로보트의 균형추 제어)

  • 심경흠;이보희;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1185-1188
    • /
    • 1996
  • In this paper we present a genetic approach for trajectory control algorithm of balancing weight for IWR biped walking robot. The biped walking robot, IWR that was made by Automatic Control Lab. of Inha University has a trunk which stabilizes its walking by generating compensation moment. Trunk is composed of a revolute and a prismatic joint which roles balancing weight. The motion of balancing weight is determined by the gait of legs and represented by two linear second order ordinary differential equations. The solution of this equation must satisfy some constraints simultaneously to have a physical meaning. Genetic algorithm search for this feasible motion of balancing weight under some constraints. Simulation results show that feasible motion of balancing weight can be obtained by genetic algorithm.

  • PDF

Dynamic Walking of a Biped Robot

  • Ma, Ling;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.138-140
    • /
    • 2004
  • This paper mainly deals with the dynamic walking of a biped robot. At first, in order to walk in various environments, it is desirable to adapt to such ground conditions with a suitable foot motion, and maintain the stability of the robot by a smooth hip motion. A method to plan a walking pattern consisting of a foot trajectory and a hip trajectory is presented. The effectiveness of the proposed method is illustrated by simulation results. Secondly, the paper brings forward a balance control technique based on off-line walking pattern with real-time modification. At last, the concept of Zero Moment Point (ZMP) is used to evaluate dynamic stability.

  • PDF

On the ZMP of biped robot (Visualization of ZMP)

  • Sung, Sang-Hak;Youm, Young-Il;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.137.3-137
    • /
    • 2001
  • Many locomotion purpose robots are being built and are under research such as mobile manipulator and biped humanoid robot, etc. Dynamic posture stability of these robots is based on the ZMP point. For getting stable ZMP trajectory, some method has been developed but is too complex and time consuming which leads to inability in generating on-line ZMP trajectory. In this paper, we give a qualitative study about behavior of ZMP in biped walking robot through visualization. This result gives intuitive understanding about behavior of ZMP under various robot state.

  • PDF

Design and implementation of biped working robot (2족 보행 로봇 설계 및 구현)

  • Kim, Myung-Jin;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.522-525
    • /
    • 2007
  • Most big difference of existing robot and biped robot stays at the leg. The wheel is very efficient with the portability than the leg. However biped robot can accomplish many role height. But The two thing which we take the center to the leg and walk to the stability is not easy work. Therefore this proposal make efforts that we try to find technical element for the walking of the robot through its design and implementation.

  • PDF

Control Gait Pattern of Biped Robot based on Human's Sagittal Plane Gait Energy (인간 관절 에너지 분석을 통한 이족로봇의 자연스러운 보행 제어)

  • Ha, Seung-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • This paper proposes a method of adaptively generating a gait pattern of biped robot. The gait synthesis is based on human's gait pattern analysis. The proposed method can easily be applied to generate the natural and stable gait pattern of any biped robot. To analyze the human's gait pattern, sequential images of the human's gait on the sagittal plane are acquired from which the gait control values are extracted. The gait pattern of biped robot on the sagittal plane is adaptively generated by a genetic algorithm using the human's gait control values. However, gait trajectories of the biped robot on the sagittal plane are not enough to construct the complete gait pattern because the biped robot moves on 3-dimension space. Therefore, the gait pattern on the frontal plane, generated from Zero Moment Point (ZMP), is added to the gait one acquired on the sagittal plane. Consequently, the natural and stable walking pattern for the biped robot is obtained, as proved by the experiments.

Gait Implementation of Biped Walking Robot(IWR-III) for continuous trunk motion (이족보행로봇(IWR-III)의 지속적인 몸체 추진을 위한 걸음새 구현)

  • Jang, Chung-Ryoul;Choi, Young-Ha;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.549-551
    • /
    • 1998
  • This paper deals with the new gait implementation of biped walking robot(IWR-III). In the case of using old gait. The trunk should be stopped during the phase changing time. But using new gait, the trunk moves continuously for all walking time. As a result, IWR-III has a walking gait similar to human being, and the motion of balancing joints can be reduced by the trunk ahead effect in the double support phase, moreover, ZMP tracking is improved, therefore the stability of IWR-III is improved. The trajectory is planned with a 5th order spline interpolation and stability of IWR-III is certified with a biped simulator.

  • PDF

Passive Dynamic Walking : Design of Internal Parameters

  • Sung, Sang-Hak;Youngil Youm;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.446-446
    • /
    • 2000
  • This paper presents the design of a passive biped walking robot based on limit cycle analysis. By using numerical analysis and experiment, we identify better design criterion for biped walking robot. In designing robot parameters we apply global search method to find limit cycles for given robot parameters and ground angle. Internal parameter variation changes limit cycle behavior, total energy, strides, etc and the characteristics of walking is analyzed by simulation and experiments.

  • PDF

A study on the Obstacle Avoidance for a Biped Walking Robot Using Genetic-Fuzzy Algorithm (퍼지와 유전알고리즘을 이용한 이족보행로봇의 방해물 회피에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.304-306
    • /
    • 2001
  • This paper presents the obstacle avoidance of a biped walking robot using GA-Fuzzy algorithm. In the case of our previous studies the surface has been assumed to be flat. For the case of the environment with obstacles, however, the walking robot might be unnatural. Thus, we considered the surface contained obstacles that the robot can pass through. We propose the optimal leg trajectory data-base by using genetic algorithm and optimal leg trajectory movement about obstacles that exist in front of the robot using fuzzy approach. It is shown that the robot can move more naturally on the surface that contains obstacles.

  • PDF