• 제목/요약/키워드: Biped Control

검색결과 180건 처리시간 0.037초

Characteristics of the ZMP for the biped robot

  • Park, Chan-Soo;Choi, Chong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.220-224
    • /
    • 2003
  • This is a preliminary study is to make the robot walk more stably by observing the ZMP (Zero Moment Point) of the robot when the robot stands on one leg(single support) and then on two legs(double support) and so on. The robot consists of nine DOF (Degree of freedom) with lower part of the body. It is equipped with motor drivers and force sensors inside the robot. The motors are controlled by the external PC (Intel pentium 4). By the experimental results, it is found that the robot is unstable in the instant of changing from single support to double support or from double support to single support. We use the trajectory compensation of the angle and the length of both legs to realize more stable walking.

  • PDF

A review on numerical models and controllers for biped locomotion over leveled and uneven terrains

  • Varma, Navaneeth;Jolly, K.G.;Suresh, K.S.
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.151-159
    • /
    • 2018
  • The evolution of bipedal robots was the foundation stone for development of Humanoid robots. The highly complex and non-linear dynamic of human walking made it very difficult for researchers to simulate the gait patterns under different conditions. Simple controllers were developed initially using basic mechanics like Linear Inverted Pendulum (LIP) model and later on advanced into complex control systems with dynamic stability with the help of high accuracy feedback systems and efficient real-time optimization algorithms. This paper illustrates a number of significant mathematical models and controllers developed so far in the field of bipeds and humanoids. The key facts and ideas are extracted and categorized in order to describe it in a comprehensible structure.

Zero Moment Point를 이용한 이족 보행 로봇의 경사로 걸음새 제어에 관한 연구 (Gait Control on Slope Way using Zero Moment Point for Robot)

  • 엄승현;임미섭;임준홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.530-532
    • /
    • 2006
  • In this paper, we propose stable walking algorithm using ZMP for the biped robot in the slope-way. At first, we define discrete state variables that classified stable area and unstable area by center of mass from ZMP during slope-way walking. For the stable walking gait, the discrete state controller for determining the high-level and low-level decision making are designed. The high-level decision making is composed of the discrete state variables; left foot support phase, right foot support phase, flat-way, and slope-way. Then the continuous state controller is implemented for the low-level decision making using ZMP.

  • PDF

Walk Simulations of a Biped Robot

  • Lim, S.;Kim, K.I.;Son, Y.I.;Kang, H.I.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2132-2137
    • /
    • 2005
  • This paper is concerned with computer simulations of a biped robot walking in dynamic gaits. To this end, a three-dimensional robot is considered possessing a torso and two identical legs of a kinematically ingenious design. Specific walking patterns are off-line generated meeting stability based on the ZMP condition. Subsequently, to verify whether the robot can walk as planned, a multi-body dynamics CAE code has been applied to the corresponding joint motions determined by inverse kinematics. In this manner, complex mass effects could be accurately evaluated for the robot model. As a result, key parameters to successful gaits are identified including inherent characteristics as well. Also, joint actuator capacities are found required to carry out those gaits.

  • PDF

Development of an autonomous biped walking robot

  • hyeung-sik choi;Oh, jeong-min;Kim, young-sik;Baek, chang-yul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.105.6-105
    • /
    • 2002
  • Contents 1We developed a new type of lower part of the human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch Joints and one roll joint. In all, a 8 degree-of-freedom robot was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has an embeded controller system including host computer, batteries and motor drivers. In the performance test, we had basic stable walking data so far, but we f...

  • PDF

이족 보행 로보트의 운동 궤적 계획 및 동적 시뮬레이션에 관한 연구 (A study on the motion trajectory planning and dynamic simulation of biped walking robot)

  • 김창부;김웅태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.959-964
    • /
    • 1992
  • This study treats the method for kinematic modeling of the biped walking robot, for synthesizing various gait trajectories, and for calculating adequate values of the joint torque inside the stable region. To synthesize various and anthropomorphic walking easily, the gait trajectory is specified by a set of ten walking prameters, and the trunk motion equation is derived by the zero moment point and the gait trajectory. By distributing ground reaction force and moment reduced at the zero moment point to the both feet, the joint torque equation can be derived readily, and according to this equation, the joint torque to stable walking can be computed.

  • PDF

유전 알고리즘 기반의 최적 이족 로봇 보행 생성에 관한 연구 (Genetic Algorithm-Based Optimal Walking Trajectory Generation for Biped Walking Robot)

  • 한경수;공정식;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.169-172
    • /
    • 2002
  • This paper is concerned with walking trajectory generation by applying the genetic algorithm. The walking trajectory is generated though three via-points and genetic algorithm is employed to find velocity and acceleration at each via-point. Also genetic algorithm is applied for balancing joint trajectory. Fitness function is used for minimizing the trajectory. As a result, new algorithm generated the smooth trajectory. The proposed algorithm is verified by the experiment of biped walking robot developed in our Control laboratory, and we compared the result with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF

Passive Dynamic Walking : Design of Internal Parameters

  • Sung, Sang-Hak;Youngil Youm;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.446-446
    • /
    • 2000
  • This paper presents the design of a passive biped walking robot based on limit cycle analysis. By using numerical analysis and experiment, we identify better design criterion for biped walking robot. In designing robot parameters we apply global search method to find limit cycles for given robot parameters and ground angle. Internal parameter variation changes limit cycle behavior, total energy, strides, etc and the characteristics of walking is analyzed by simulation and experiments.

  • PDF

휴머노이드 로봇의 경사면 내리막 보행을 위한 지능보행 연구 (Intelligent Walking of Humanoid Robot for Stable Walking on a Decent)

  • 김동원;박귀태
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.197-202
    • /
    • 2006
  • We present the synergy effect of humanoid robot walking down on a slope and support vector machines in this paper. The biped robot architecture is highly suitable for the working in the human environment due to its advantages in obstacle avoidance and ability to be employed as human substitutes. But the complex dynamics in the robot and ground makes robot control difficult. The trajectory of the zero moment point (ZMP) in a biped walking robot is an important criterion used for the balance of the walking robots. The ZMP trajectory as dynamic stability of motion will be handled by support vector machines (SVM). Three kinds of kernels are also employed, and each result from these kernels is compared to one another.

  • PDF