• Title/Summary/Keyword: Biped Control

Search Result 180, Processing Time 0.029 seconds

Locomotion of Biped Robots on Irregular Surface Based on Pseudo-Impedance Model (의사-임피던스 모델을 이용한 비평탄면에서의 2족보행로봇의 보행)

  • Shin, Hyeon-Sik;Park, Jong-Hyeon;Kwon, O-Hung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.667-673
    • /
    • 2010
  • This paper proposes a control method based on a pseudo-impedance model to control the motion of biped robots walking on an uneven surface. The pseudo-impedance model simulates the action of the ankle of a foot landing on the ground when a human walks. When the foot is in contact with the ground, the human ankle goes through two different phases. In the first phase, the human exerts little or no effort and applies no torque on the ankle so that the orientation of the foot is effortlessly and passively adjusted with respect to the ground. In the second phase of landing, the ankle generates a significant amount of torque in order to rotate and move the main part of the human body forward and to support the weight of the human; this phase is called the weight acceptance phase. Computer simulations of a 12-DOF biped robot with a 6-DOF environment model were performed to determine the effectiveness of the proposed pseudo-impedance control. The simulation results show that stable locomotion can be achieved on an irregular surface by using the proposed model.

Locomotion Control of Biped Robots with Serially-Linked Parallel Legs (이중 병렬형 다리 구조를 가진 2족보행로봇의 보행제어)

  • Yoon, Jung-Han;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.683-693
    • /
    • 2010
  • In this paper, we propose a new parallel mechanism for the legs of biped robots and the control of the robot's locomotion. A leg consists of two 3-DOF parallel platforms linked serially: one is an orientation platform for a thigh and the other is the 3-DOF asymmetric parallel platform for the shank. The desired locomotion trajectory is generated on the basis of the Gravity-Compensated Inverted Pendulum Mode (GCIPM) in the sagittal direction and the Linear Inverted Pendulum Mode (LIPM) in the lateral direction, respectively. In order to simulate the ground reaction force, a 6-DOF elastic pad model is used underneath each of the soles. The performance and effectiveness of the proposed parallel mechanism and locomotion control are shown by the results of computer simulations of a 12-DOF parallel biped robot using $SimMechanics^{(R)}$.

Sliding Mode Controller Design for Biped Robot (이족보행로봇을 위한 슬라이딩 제어기 설계)

  • Park, In-Gyu;Kim, Jin-Geol;Kim, Ki-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

Analysis of Stable Walking Pattern of Biped Humanoid Robot: Fuzzy Modeling Approach (이족 휴머노이드 로봇의 안정적인 보행패턴 분석: 퍼지 모델링 접근방법)

  • Kim Dongwon;Park Gwi-Tae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.376-382
    • /
    • 2005
  • In this paper, practical biped humanoid robot is presented, designed, and modeled by fuzzy system. The humanoid robot is a popular research area in robotics because of the high adaptability of a walking robot in an unstructured environment. But owing to the lots of circumstances which have to be taken into account it is difficult to generate stable and natural walking motion in various environments. As a significant criterion for the stability of the walk, ZMP (zero moment point) has been used. If the ZMP during walking can be measured, it is possible for a biped humanoid robot to realize stable walking by a control method that makes use of the measured ZMP. In this study, measuring the ZMP trajectories in real time situations throughout the whole walking phase on the flat floor and slope are conducted. And the obtained ZMP data are modeled by fuzzy system to explain empirical laws of the humanoid robot. By the simulation results, the fuzzy system can be effectively used to model practical humanoid robot and the acquired trajectories will be applied to the humanoid robot for the human-like walking motions.

Biped Gait Generation based on Linear Inverted Pendulum Mode On Flexible Terrain

  • Ueno, Satoshi;Igata, Kazuma;Kumon, Makoto;Mizumoto, Ikuro;Iwai, Zenta
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.203-208
    • /
    • 2003
  • In this paper, gait generation algorithm based on Linear Inverted Pendulum Mode is extended considering that the terrain is uncertain and flexible. Deformation of the soft terrain by the weight of the biped robot is taken into account to design the desired motion of the swing leg. Landing time disagreement caused by dynamics of the robot is also considered and a method to adjust gait is proposed. Results of numerical simulation show the effectiveness of the proposed method.

  • PDF

Attitude Estimation of a Foot for Biped Robots Using Multiple Sensors (다중 센서 융합을 통한 이족 보행 로봇 발의 자세 추정)

  • Ryu, Je-Hun;You, Bun-Jae;Park, Min-Yong;Kim, Do-Yoon;Choi, Young-Jin;Oh, Sang-Rok
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.586-588
    • /
    • 2004
  • Although stable control algorithm has been implemented to the biped robot, the stability is not guaranteed because of encoder errors and/or rigid body elastics. Hence precise body pose estimation is required for more natural and long term walk. Specially pelvis sloping by gravity or uneven ground on landing place are most critical reason for undulated motion. In order to overcome these difficulties an estimation system for foot position and orientation using PSD sensors and Gyro sensors is proposed along with calibration algorithm and experimental verification.

  • PDF

Development of Autonomous Biped Walking Robot (자립형 이족 보행 로봇의 개발)

  • Kim, Y.S.;Oh, J.M.;Baik, C.Y.;Woo, J.J.;Choi, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.805-809
    • /
    • 2003
  • We developed a human-sized BWR(biped walking robot) named KUBIR1 driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIR1 was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize the information on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interface was developed based on the OpenGL tool. Through the graphic interface, the control input of KUBIR1 is performed.

  • PDF

Development of Graphic interface for Biped walking robot (이족 보행 로봇의 그래픽 인터페이스 개발)

  • 김영식;전대원;최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.507-510
    • /
    • 2002
  • We developed a human-sized BWR(biped walking robot) named KUBIRI driven by a new actuator based on the ball screw which has high strength and high gear ratio. KUBIRI was developed to walk autonomously such that it is actuated by small torque motors and is boarded with DC battery and controllers. To utilize informations on the human walking motion and to analyze the walking mode of robot, a motion capture system was developed. The system is composed of the mechanical and electronic devices to obtain the joint angle data. By using the obtained data, a 3-D graphic interfacer was developed based on the open inventor tool. Through the graphic interfacer, the control input of KUBIRI is performed.

  • PDF

A Study On The Development Of A Miniature Biped Robot Using Sensor (센서를 이용한 소형 이족 보행 로봇의 개발에 관한 연구)

  • Jung, Chang-Youn;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2433-2435
    • /
    • 2002
  • The purpose of this paper is to introduce a case study of developing a miniature biped robot. The biped robot has a total of twenty-one degrees of freedom(DOF) ; There are two legs which have six DOF each, two arms which have three DOF each and a waist which has three DOF. RC servo-motors were used as actuators. We have developed motor controller, sensor controller and ISA-interface card. Motor controller, PWM generator, can control eight motors Sensor controller is connected to eight FSR(Force Sensing Resistors). For high level controller communicate with low level controller, ISA-interface card has developed. For the stable walking, CMAC(Cerebellar Model Articulation Controller) neural network algorithm is applied to our system CMAC is robust at noise.

  • PDF

Development of Android Application for Wireless Control of Omnidirectional Biped Walking of Humanoid Robot (휴머노이드 로봇의 전방향 이족보행 원격제어를 위한 안드로이드 애플리케이션 개발)

  • Park, GyuYung;Yun, JaeHun;Choi, YoungLim;Kim, Jong-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.223-231
    • /
    • 2014
  • Humanoid robot is the most suitable robot platform for effective human interaction and various intelligent services. The present work addresses development of real time wireless control application of humanoid robot's forward and backward walks, and turning in walking. For convenience of human users, the application is developed on Android OS (Operating System) working on his or her smartphone. To this end, theoretic background on various-directional biped walking is proposed based on joint trajectories for forward walking, which have been shaped with a global optimization method. In this paper, backward walking is scheduled by interchange of angles and angular velocities and additional change of signs in angular velocities at all the via-points connecting cubic polynomial trajectories. Turning direction in walking is also implemented by activating the transversal hip joint initially located in the support leg in two stages. After validation of the proposed walking schemes with Matlab simulator, a smartphone application for the omnidirectional walking has been developed to control a humanoid robot platform named DARwIn-OP interconnected via Wi-Fi. Experiment result of the present wireless control of a humanoid robot with smartphone is successful, and the application will be released in application market near future.