• 제목/요약/키워드: Biotic and abiotic stresses

검색결과 117건 처리시간 0.023초

식물에서 non-tandem CCCH zinc finger 그룹 유전자에 의한 스트레스 반응 조절 (The Regulation of Stress Responses by Non-tandem CCCH Zinc Finger Genes in Plants)

  • 석혜연;베이지드 엠디;살커 스와날리;이선영;문용환
    • 생명과학회지
    • /
    • 제33권11호
    • /
    • pp.956-965
    • /
    • 2023
  • CCCH zinc finger 단백질은 세 개의 시스테인(cysteine, C) 아미노산과 한 개의 히스티딘(histidine, H) 아미노산으로 구성된 아연이온(Zn+)에 결합하는 손가락 구조의 zinc finger 모티프를 가졌으며, 식물에는 많은 수의 CCCH zinc finger 단백질 유전자가 존재한다. CCCH zinc finger 단백질은 2개의 CCCH zinc finger 모티프를 가지는 TZF와 그 외 나머지인 non-TZF로 구분이 되지만 지금까지의 CCCH zinc finger 단백질의 기능에 대한 연구는 주로 TZF, 특히 식물 특이적으로 존재하는 RR-TZF를 중심으로 이루어져 왔다. 그러나 최근 들어 non-TZF 유전자에 대한 연구도 활발히 진행되고 있다. Non-TZF는 생물 스트레스와 고염, 건조, 저온, 고온, 산화 스트레스 등 다양한 환경 스트레스 반응에 관여하는 것으로 알려졌다. Non-TZF는 다양한 방식으로 하위 유전자를 조절하여 식물의 스트레스 반응에 관여하는데, 세포질에 위치하며 RNA에 결합하여 RNA의 안정성을 조절하고 전사 후 단계에서 하위 유전자를 조절하거나 핵에 위치하고 전사 활성화 또는 전사 억제를 통해 전사인자로서 기능을 하기도 한다. 그러나 이러한 연구에도 불구하고 non-TZF를 통한 스트레스 신호전달 경로 및 상위 유전자, 하위 유전자는 거의 알려져 있지 않다. 따라서 CCCH zinc finger 유전자에 대한 이해를 넓히기 위해서는 TZF뿐만 아니라 non-TZF 유전자의 스트레스 반응에 관한 지속적이고도 집중적인 연구가 필요하다. 본 총설 논문에서는 지금까지 스트레스 반응 조절에 관여하는 것으로 밝혀진 non-TZF 유전자들과 그 유전자들의 분자적 기능을 서술하였다.

Defense Genes Induced by Pathogens and Abiotic Stresses in Panax ginseng C.A. Meyer

  • Lee, Ok-Ran;Sathiyaraj, Gayathri;Kim, Yu-Jin;In, Jun-Gyo;Kwon, Woo-Seang;Kim, Ju-Han;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.1-11
    • /
    • 2011
  • Korean ginseng is a medicinally important perennial herb from the family Araliaceae. It has been cultivated for its highly valued medicinal properties for over 1,000 years in east Asian countries such as China, Korea, and Japan. Due to its longtime cultivation in shady areas, ginseng is frequently exposed to pathogenic infections. Plants protect themselves from microbial pathogens using an array of defense mechanisms, some of which are constitutively active, while others are activated upon pathogen invasion. These induced defense responses, controlled by defense-related genes, require tradeoffs in terms of plant fitness. We hypothesize that ginseng, as with other plants, possesses regulatory mechanisms that coordinate the activation of attacker-specific defenses in order to minimize fitness costs while attaining optimal resistance. Several classes of defense-related genes are induced by infection, wounds, irradiation, and other abiotic stresses. Both salicylates and jasmonates have been shown to cause such responses, although their specific roles and interactions in signaling and development are not fully understood in ginseng. This review summarizes possible defense-related genes in ginseng based on their expression patterns against biotic and abiotic stresses and describes their functional roles.

γ-Aminobutyric Acid Metabolism in Plant under Environment Stressses

  • Ham, Tae-Ho;Chu, Sang-Ho;Han, Sang-Jun;Ryu, Su-Noh
    • 한국작물학회지
    • /
    • 제57권2호
    • /
    • pp.144-150
    • /
    • 2012
  • ${\gamma}$-Aminobutyric acid (GABA) is a non-protein amino acid that is widely distributed in plant and animal kingdom. GABA is found in tissues of the central nervous system (CNS) in animals. GABA functions as a the major inhibitory neurotransmitter in the CNS by acting through the GABA receptors. Clinical studies have revealed the relationship between an increased intake of GABA or analogues with several health benefits, including lowering of blood pressure in mildly hypertensive animals and humans. Furthermore, GABA would also has an inhibitory effect on cancer cell proliferation, stimulates cancer cell apoptosis and plays a role in alcohol-associated diseases and schizophrenia. In plants, interest in the GABA emerged mainly from experimental observations that GABA is largely and rapidly produced in large amounts in response to biotic and abiotic stresses. In this study, we speculated the properties and metabolism of GABA in plant and functions in relation to the responses to environmental stresses.

Super tree development by pyramiding heterologous functional genes

  • Noh, Eun-Woon
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.120-125
    • /
    • 2005
  • Continuous degradation of forest in both quality and quantity threatens wood security in the future. Thus in the future, most wood and pulp will be expected to be produced from plantation forests. We attempt to produce superior trees suitable for such plantations with maximum productivity in limited land area. Tree productivity could be enhanced either by promoting growth and wood quality or by reducing loss caused by abiotic and biotic stresses. Genetic transformation techniques may offer ways to improve the productivity by enabling trees to tolerate the stresses or to covert limited resources into big biomass. With the availability of information on various functional genes and gene transfer techniques, it should be possible to develop such trees. In this presentation, our work to produce such trees at Korea Forest Research Institute is briefly introduced.

  • PDF

Functions of MAPK Cascade Pathways in Plant Defense Signaling

  • Cheong, Yong-Hwa;Kim, Min-Chul
    • The Plant Pathology Journal
    • /
    • 제26권2호
    • /
    • pp.101-109
    • /
    • 2010
  • Protein phosphorylation is one of the major mechanisms for controlling many cellular processes in all living organisms. Mitogen-activated protein kinase (MAPK) cascades are known to transducer extracellular stimuli to several cellular processes, including cell division, differentiation as well as responses to various stresses. In plants, several studies have revealed that MAPK cascade pathways play an important role in responses against biotic and abiotic stresses, including wounding, pathogen infection, temperature, drought, salinity and plant hormones. It is also known that MAPK cascades-mediated signaling is an essential process in the resistance step to pathogens by regulating the activity of transcription factors. Here, the insights into the functions of MAPK cascade pathways in plant defense response signaling from Arabidopsis, tobacco and rice are described.

Effect of salt stress on the anthocyanin content and associated genes in Sorghum bicolor L.

  • Jeon, Donghyun;Lee, Solji;Choi, Sehyun;Seo, Sumin;Kim, Changsoo
    • 농업과학연구
    • /
    • 제47권1호
    • /
    • pp.105-117
    • /
    • 2020
  • Abiotic stress is one of the most serious problems in plant productivity because it dramatically delays plant growth and development. One of the abiotic stresses, soil salinity, has an adverse effect on plant growth, particularly in areas where irrigation is necessary like semiarid Asia and Africa. Among several physiological parameters, anthocyanin accumulation is a valuable indicator of the condition of the plant, and it tends to increase under salt stress conditions because of its protective role in such an environment. Consequently, it may be important to search for well adapted genotypes for upcoming climate changes. Anthocyanins are known to have important roles in defense against biotic and abiotic stresses, providing important functions for protecting plant cells from reactive oxygen species. In this study, we investigated the anthocyanin accumulation between two Korean sorghum genotypes, Sodamchal and Nampungchal. The two genotypes were subjected to a regulated salinity condition, and the anthocyanin contents were evaluated in both. In Nampungchal, the anthocyanin content increased with 150 mM NaCl treatment during the time course of the experiment. However, the anthocyanin content of Sodamchal decreased in the same condition. The measured values of the anthocyanin content should be useful to identify the intensity of the salt tolerance in Sorghum bicolor L. Furthermore, we studied gene expression profiling of salt stress related genes with qRT-PCR. These results suggest that Nampungchal is a more tolerant genotype to salt stress compared to Sodamchal. This information should be useful for breeding salt-resistant cultivars in sorghum.

Development of Stress-tolerant Crop Plants

  • CHOI Hyung-in;KANG Jung-youn;SOHN Hee-kyung;KIM Soo-Young
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 추계학술대회
    • /
    • pp.41-47
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, $50-80\%$ of the maximum potential yield is lost by these 'environmental or abiotic stresses', which is approximately ten times higher than the loss by biotic stresses. Thus, Improving stress-tolerance of crop plants is an important way to improve agricultural productivity. In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.

  • PDF

Development of Stress-tolerant Crop Plants

  • Choi, Hyung-In;Kang, Jung-Youn;Sohn, Hee-Kyung;Kim, Soo-Young
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2002년도 춘계학술대회
    • /
    • pp.41-47
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, 50-80% of the maximum potential yield is lost by these 'environmental or abiotic stresses', which is approximately ten times higher than the loss by biotic stresses. Thus, improving stress-tolerance of crop plants is an important way to improve agricultural productivity. In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.

  • PDF

The Bacillus zanthoxyli HS1 Strain Renders Vegetable Plants Resistant and Tolerant against Pathogen Infection and High Salinity Stress

  • Usmonov, Alisher;Yoo, Sung-Je;Kim, Sang Tae;Yang, Ji Sun;Sang, Mee Kyung;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • 제37권1호
    • /
    • pp.72-78
    • /
    • 2021
  • Various management systems are being broadly employed to minimize crop yield loss resulting from abiotic and biotic stresses. Here we introduce a Bacillus zanthoxyli HS1 strain as a potent candidate for managing manifold stresses on vegetable plants. Considering 16S rDNA sequence and biochemical characteristics, the strain is closely related to B. zanthoxyli. The B. zanthoxyli HS1's soil-drench confers disease resistance on tomato and paprika plants against infection with Ralstonia solanacearum and Phytophthora capsici, respectively. Root and shoot growths are also increased in B. zanthoxyli HS1-treated cabbage, cucumber, and tomato plants, compared with those in mock-treated plants, after application of high salinity solution. Moreover, the pretreatment of B. zanthoxyli HS1 on cabbage plants inhibits the degradation of chloroplast pigments caused by high salinity stresses, whereas the inhibitory effect is not observed in cucumber plants. These findings suggest that B. zanthoxyli HS1 stain inhibits disease development and confers tolerance to salinity stress on vegetable plants.

RNA silencing-mediated resistance is related to biotic / abiotic stresses and cellular RdRp expression in transgenic tobacco plants

  • Wu, Xiao-Liang;Hou, Wen-Cui;Wang, Mei-Mei;Zhu, Xiao-Ping;Li, Fang;Zhang, Jie-Dao;Li, Xin-Zheng;Guo, Xing-Qi
    • BMB Reports
    • /
    • 제41권5호
    • /
    • pp.376-381
    • /
    • 2008
  • The discovery of RNA silencing inhibition by virus encoded suppressors or low temperature leads to concerns about the stability of transgenic resistance. RNA-dependent RNA polymerase (RdRp) has been previously characterized to be essential for transgene-mediated RNA silencing. Here we showed that low temperature led to the inhibition of RNA silencing, the loss of viral resistance and the reduced expression of host RdRp homolog (NtRdRP1) in transgenic T4 progeny with untranslatable potato virus Y coat protein (PVY-CP) gene. Moreover, RNA silencing and the associated resistance were differently inhibited by potato virus X (PVX) and tobacco mosaic virus (TMV) infections. The increased expression of NtRdRP1 in both PVX and TMV infected plants indicated its general role in response to viral pathogens. Collectively, we propose that biotic and abiotic stress factors affect RNA silencing-mediated resistance in transgenic tobacco plants and that their effects target different steps of RNA silencing.