• Title/Summary/Keyword: Biosensors

Search Result 296, Processing Time 0.027 seconds

Bridge Resistance Deviation-to-Period Converter for Resistive Biosensors

  • Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.195-199
    • /
    • 2014
  • A bridge resistance deviation-to-period (BRD-to-P) converter is presented for interfacing resistive biosensors. It consists of a linear operational transconductance amplifier (OTA) and a current-controlled oscillator (CCO) formed by a current-tunable Schmitt trigger and an integrator. The free running period of the converter is 1.824 ms when the bridge offset resistance is $1k{\Omega}$. The conversion sensitivity of the converter amounts to $3.814ms/{\Omega}$ over the resistance deviation range of $0-1.2{\Omega}$. The linearity error of the conversion characteristic is less than ${\pm}0.004%$.

Design and Implementation of Biosignal Monitoring for Enhancement of Soldier Survivability (개인병사의 생존성 증대를 위한 생체신호 모니터링 기법의 설계 및 구현)

  • Lee, Seung-Youl;Park, Sang-Hoon;Lee, Choon-Woo;Kim, Hyun-Jun;Chae, Jae-Wook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.841-846
    • /
    • 2013
  • Recently, personal health monitoring system using intelligent biosensors and equipments has been realized. This system can be adopted for soldier's biosignal monitoring system. In this paper, we propose a soldier biosignal monitoring system using personal biosensors, such as the ECG sensors and accelerometer.

Gas Permeable Membranes Composed of Carboxylated Poly(vinyl chloride) and Polyurethane

  • 임전원;김채균;김완영;정용섭;이윤식
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.672-676
    • /
    • 1999
  • Gas-Permeable polymeric membranes containing carboxyl groups which are suitable for enzyme immobilization were investigated in order to use them as gas electrode membranes in biosensors. Carboxylated polyurethane (CPU) was synthesized via a reaciton between 2,2-bis(hydroxymethyl)propionic acid as a chain extender and prepolymers prepared from polycarprolactone(Mn=2,000) and 4,4'-diphenylmethane diisocynate. It was difficult to prepared membranes from the pure CPU because of its high elasticity and cohesion. However, transparent free-standing membranes were easily prepared from the blend solution of CPU and carboxylated poly(vinyl chloride)(CPVC) in tetrahydrofuran. Both elasticity and cohesion of the CPU/CPVC membranes were decreased with increasing the content of CPVC. DSC experiment suggests that CPU and CPVC may be well mixed. Permeability coefficients for O₂and CO₂(Po₂and Pco₂)in the membranes increased as the proportion of CPU increased. The addition of dioxtyl phthalate(DOP), a plasticizer, significantly enhanced the Po₂and Pco₂which were 4,4 and 30 barrer, respectively, in the CPU/CPVC(80/20 wt/wt) membranes containing 20% of DOP at 25℃ and 100psi. Thus this type of membranes may have a potential for the use as gas electrode membranes in biosensors.