• Title/Summary/Keyword: Biosensor

Search Result 684, Processing Time 0.031 seconds

Preparation of Affinity Column Based on ZR4+ Ion forPhosphoproteins Isolation

  • Lee, Seon-Mi;Bae, In-Ae;Park, Jung-Hyen;Kim, Tae-Dong;Choi, Seong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.279-285
    • /
    • 2009
  • This paper has described about preparation of $Zr^{4+}$ affinity column based on the poly(styrene-co- gly-cidyl methacrylate) prepared by emulsion polymerization of styrene and glycidyl methacrylate in order to isolate phosphopeptide. The $Zr^{4+}$ ions were introduced after the phophonation of an epoxy group on polymeric microspheres. The successful preparation of $Zr^{4+}$-immobilized polymeric microsphere stationary phase was confirmed through Fourier transform infrared spectra, optical microscopy, scanning electron microscopy, X-ray photoelectron spectra and inductively coupled plasma-atomic emission spectrometer. The separation efficiency for $Zr^{4+}$ affinity column prepared by slurry packing was tested to phosphonated casein and dephosphonated casein. The resolution time (min) of the phosphonated casein was higher than that of dephosphated casein for $Zr^{4+}$ affinity polymeric microsphere by liquid chromatography. This $Zr^{4+}$ affinity column can be used for isolation of phosphonated casein from casein using liquid chromatography.

Online Multi-Task Learning and Wearable Biosensor-based Detection of Multiple Seniors' Stress in Daily Interaction with the Urban Environment

  • Lee, Gaang;Jebelli, Houtan;Lee, SangHyun
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.387-396
    • /
    • 2020
  • Wearable biosensors have the potential to non-invasively and continuously monitor seniors' stress in their daily interaction with the urban environment, thereby enabling to address the stress and ultimately advance their outdoor mobility. However, current wearable biosensor-based stress detection methods have several drawbacks in field application due to their dependence on batch-learning algorithms. First, these methods train a single classifier, which might not account for multiple subjects' different physiological reactivity to stress. Second, they require a great deal of computational power to store and reuse all previous data for updating the signle classifier. To address this issue, we tested the feasibility of online multi-task learning (OMTL) algorithms to identify multiple seniors' stress from electrodermal activity (EDA) collected by a wristband-type biosensor in a daily trip setting. As a result, OMTL algorithms showed the higher test accuracy (75.7%, 76.2%, and 71.2%) than a batch-learning algorithm (64.8%). This finding demonstrates that the OMTL algorithms can strengthen the field applicability of the wearable biosensor-based stress detection, thereby contributing to better understanding the seniors' stress in the urban environment and ultimately advancing their mobility.

  • PDF

Genetically Encoded Biosensor Engineering for Application in Directed Evolution

  • Yin Mao;Chao Huang;Xuan Zhou;Runhua Han;Yu Deng;Shenghu Zhou
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1257-1267
    • /
    • 2023
  • Although rational genetic engineering is nowadays the favored method for microbial strain improvement, building up mutant libraries based on directed evolution for improvement is still in many cases the better option. In this regard, the demand for precise and efficient screening methods for mutants with high performance has stimulated the development of biosensor-based high-throughput screening strategies. Genetically encoded biosensors provide powerful tools to couple the desired phenotype to a detectable signal, such as fluorescence and growth rate. Herein, we review recent advances in engineering several classes of biosensors and their applications in directed evolution. Furthermore, we compare and discuss the screening advantages and limitations of two-component biosensors, transcription-factor-based biosensors, and RNA-based biosensors. Engineering these biosensors has focused mainly on modifying the expression level or structure of the biosensor components to optimize the dynamic range, specificity, and detection range. Finally, the applications of biosensors in the evolution of proteins, metabolic pathways, and genome-scale metabolic networks are described. This review provides potential guidance in the design of biosensors and their applications in improving the bioproduction of microbial cell factories through directed evolution.

A Biosensor for the Rapid Detection of the Fungicide Iprovalicarb Residuess (살균제 Iprovalicarb 잔류물의 신속한 검출을 위한 바이오센서)

  • Cho, Han-Keun;Kim, Woon-Ho;Kyung, Kee-Sung;Lee, Eun-Young
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.440-447
    • /
    • 2007
  • In this study, a biosensor was developed using an enzyme-linked immunosorbent assay (ELISA) to rapidly measure the fungicide iprovalicarb residues in agricultural products. The biosensor was designed to include micro-pumps and solenoid valves for fluid transport, a spectrophotometer cuvet as a reaction chamber, a photodiode with a light-emitting diode for optical density measurement, and a control microcomputer to implement assay. The rate of change in optical density of the cuvet was read as final signal output. Micro-pumps were evaluated to investigate their delivery capability, the highest values of the error and the coefficient of variation were 4.3% and 4.6% respectively. As the incubation period was reduced from 15 minutes to 11 minutes to shorten the total processing time, the sensor sensitivity was decreased as the antibody dilution ratio was reduced to a half. The maximum usable period of the coated cuvet was found to be two days with 1% error limit. To predict the concentration of the iprovalicarb residue in agricultural products, a linear calibration model was obtained with r-square values of 0.992 for potato and 0.985 for onion. In validation test for the samples of potatoes and onions against the high performance liquid chromatography, very high correlation values were obtained as 0.996 and 0.993 respectively. Using the cuvet immobilized with antigen, it took 21-minutes for the biosensor to complete the measuring process of the iprovalicarb residues.

The Studies for the Malate Tissue Biosensor Using Malate Dehydrogenase(Decarboxylating) in the Bundle Sheath Cell of the Corn Leaf (옥수수잎의 유관속초세포내에 들어 있는 Malate Dehydrogenase(Decarboxylating)을 이용한 Malate 측정용 조직바이오센서에 관한 연구)

  • 김의락;노광수
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.319-324
    • /
    • 1994
  • A biosensor for the measurement of malate has been constructed by the sodium-alginate immobilized bundle sheath cell tissue of corn leaf containing malate dehydrogenase (decarboxylating) (EC 1. 1. 1. 40) on the CO2 gas-sensing electrode. The proposed tissue sensor had the linear in the range of malate concentration $5.5{\times}10^{-5}M∼2.5{\times}10^{-2}M$ with a slope of 53.5 mV/decade in 0.02M Tris-HCl buffer solution at optimum pH 8.0, and $25^{\circ}C$. A response time was 16∼18min. The present L-malate sensing tissue sensor is stable for more than one week. At pH 7.4, Km value was $0.6{\times}10^{-5}M$. The various kinds of salt did not effect the signal of malate tissue biosensor as the inhibitor. We can measure the malate by the CO2 electrode at the pH=8.0. Thus, the proposed tissue sensor will be useful for the measurement of malate.

  • PDF

Immobilization of Recombinant Bacterial Biosensors: a Simple Approach for the On-Site Detection of Phenolic Compounds (재조합 박테리아 바이오센서의 고정화: 페놀계 화합물의 현장 검출을 위한 간단한 접근 방법)

  • Shin, Hae-Ja
    • Journal of Life Science
    • /
    • v.21 no.9
    • /
    • pp.1323-1328
    • /
    • 2011
  • We herein report the development of an agarose-gel-immobilized recombinant bacterial biosensor simple system for the field monitoring of phenolic compounds. Escherichia coli cells harboring the pLZCapR plasmid, which was previously designed to express the ${\beta}$-galactosidase reporter gene in the presence of phenolic compounds, were co-immobilized with a substrate [chlorophenol red ${\beta}$-galactopyranoside (CPRG) in agarose gel, and dispensed to the wells of a 96-well plate. Field samples were added to the wells and color development was monitored. In the presence of 5 ${\mu}M$ to 10 mM of phenol, the biosensor developed a red (representing hydrolysis of CPRG) color. Other phenolic compounds were also detected by this immobilized system, with the pattern resembling that previously reported for the corresponding non-immobilized biosensor. The immobilized cells showed optimum activity when the gel was simultaneously supplemented with 6% dimethyl formamide (DMF), 0.1% SDS and 10 mM $CaCl_2$. The immobilized biosensor described herein does not require the addition of a substrate or the use of unwieldy instruments or sample pretreatments that could complicate field studies.

Electrochemical Properties of Biosensor with Butyl Rubber Binder (부틸고무를 결합재로 사용한 바이오센서의 전기화학적 성질)

  • Choi, Sei-Young;Yoon, Kil-Joong
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.231-237
    • /
    • 2006
  • An enzyme electrode bound by butyl rubber was newly constructed for the determination of hydrogen peroxide and for the practical application as a biosensor. Then its electrochemical properties were investigated. It produced a hundreds-fold increased signal compared to the plant or animal tissue based biosensor studied previously and could be run at between $0.0{\sim}-1.00\;V$(vs. Ag/AgCl). The relationship between signal and electrode potential was linear in the experimental range of potential. It showed a detection limit of $3.0{\times}10^{-4}\;M$ and a very good linearity of Lineweaver-Burk plot giving the proof of a good enzyme immobilization. Especially, both the reproducibility of signal current due to its high sensitivity and mechanical stability presented a new possibility for the practical use of biosensor bound with butyl rubber.

Increased accuracy of estrus prediction using ruminoreticular biocapsule sensors in Hanwoo (Bos taurus coreanae) cows

  • Daehyun Kim;Woo-Sung Kwon;Jaejung Ha;Joonho Moon;Junkoo Yi
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.759-766
    • /
    • 2023
  • Visual estrus observation can only be confirmed at a rate of 50%-60%, which is lower than that obtained using a biosensor. Thus, the use of biosensors provides more opportunities for artificial insemination because it is easier to confirm estrus than by visual observation. This study determines the accuracy of estrus prediction using a ruminoreticular biosensor by analyzing ruminoreticular temperature during the estrus cycle and measuring changes in body activity. One hundred and twenty-five Hanwoo cows (64 with a ruminal biosensor in the test group and 61 without biosensors in the control group) were studied. Ruminoreticular temperatures and body activities were measured every 10 min. The first service of artificial insemination used gonadotropin-releasing hormone (GnRH)-based fixed-time artificial insemination protocol in the control and test groups. The test group received artificial insemination based on the estrus prediction made by the biosensor, and the control group received artificial insemination according to visual estrus observation. Before artificial insemination, the ruminoreticular temperature was maintained at an average of 38.95 ± 0.05℃ for 13 h (-21 to -9 h), 0.73℃ higher than the average temperature observed at -48 h (38.22 ± 0.06℃). The body activity, measured using an indwelling 3-axis accelerometer, averaged 1502.57 ± 27.35 for approximately 21 h from -4 to -24 h before artificial insemination, showing 203 indexes higher body activity than -48 hours (1299 ± 9.72). Therefore, using an information and communication techonology (ICT)-based biosensor is highly effective because it can reduce the reproductive cost of a farm by accurately detecting estrus and increasing the rate of estrus confirmation in cattle.

Development of Biosensors for Rapid Detection of Foodborne Pathogenic Bacteria using CRISPR/Cas (CRISPR/Cas 시스템 기술을 활용한 고위험성 식중독 세균 신속 검출을 위한 바이오센서 개발)

  • Seon Yeong Jo;Jong Pil Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.279-286
    • /
    • 2023
  • Rapid and accurate detection of pathogenic bacteria is crucial for various applications, including public health and food safety. However, existing bacteria detection techniques have several drawbacks as they are inconvenient and require time-consuming procedures and complex machinery. Recently, the precision and versatility of CRISPR/Cas system has been leveraged to design biosensors that offer a more efficient and accurate approach to bacterial detection compared to the existing techniques. Significant research has been focused on developing biosensors based on the CRISPR/Cas system which has shown promise in efficiently detecting pathogenic bacteria or virus. In this review, we present a biosensor based on the CRISPR/Cas system that has been specifically developed to overcome these limitations and detect different pathogenic bacteria effectively including Vibrio parahaemolyticus, Salmonella, E. coli O157:H7, and Listeria monocytogenes. This biosensor takes advantage of the CRISPR/Cas system's precision and versatility for more efficiently accurately detecting bacteria compared to the previous techniques. The biosensor has potential to enhance public health and ensure food safety as the biosensor's design can revolutionize method of detecting pathogenic bacteria. It provides a rapid and reliable method for identifying harmful bacteria and it can aid in early intervention and preventive measures, mitigating the risk of bacterial outbreaks and their associated consequences. Further research and development in this area will lead to development of even more advanced biosensors capable of detecting an even broader range of bacterial pathogens, thereby significantly benefiting various industries and helping in safeguard human health

Enzyme Immunoassay for Rapid Detection of the Fungicide Iprovalicarb Residues (살균제 Iprovalicarb 잔류물의 신속한 검출을 위한 효소면역분석법)

  • Cho, H.K.;Kyung, K.S.;Lee, E.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.535-540
    • /
    • 2006
  • For a biosensor development, an enzyme-linked immunosorbent assay (ELISA) of the fungicide iprovalicarb was developed by minimizing the processing time. The time for whole incubation process was reduced from 135 minutes to 15 minutes. The concentration of antibody was varied to improve sensitivity. The total processing time was reduced from 2.5 hours to 20 minutes, the final sensitivity ($IC_{50}$ value) of 7.93 ng/mL and the lowest detection limit of 0.045 ng/mL were obtained. This ELISA was applied to potatoes and onions, and the recoveries were in the range of 98.85 $\sim$ 101.20% and 87.97 $\sim$ 102.70%, respectively. Accordingly, this method can be used as basis for a biosensor for rapid monitoring of iprovalicarb residues in crops.