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Abstract: Wearable biosensors have the potential to non-invasively and continuously monitor seniors’ 

stress in their daily interaction with the urban environment, thereby enabling to address the stress and 

ultimately advance their outdoor mobility. However, current wearable biosensor-based stress detection 

methods have several drawbacks in field application due to their dependence on batch-learning 

algorithms. First, these methods train a single classifier, which might not account for multiple subjects’ 

different physiological reactivity to stress. Second, they require a great deal of computational power to 

store and reuse all previous data for updating the signle classifier. To address this issue, we tested the 

feasibility of online multi-task learning (OMTL) algorithms to identify multiple seniors’ stress from 

electrodermal activity (EDA) collected by a wristband-type biosensor in a daily trip setting. As a result, 

OMTL algorithms showed the higher test accuracy (75.7%, 76.2%, and 71.2%) than a batch-learning 

algorithm (64.8%). This finding demonstrates that the OMTL algorithms can strengthen the field 

applicability of the wearable biosensor-based stress detection, thereby contributing to better 

understanding the seniors’ stress in the urban environment and ultimately advancing their mobility. 

Key words:  Online multi-task learning, wearable biosensing, stress in daily life, seniors’ mobility, the 

urban environment 

1. INTRODUCTION

Mobility (i.e., an individual’s overall capability to access desired people or places [1]) is a fundamental 

civil right that should be maintained in the urban infrastructure [2]. However, the mobility of the senior 

population (i.e., people aged 65 or over) has been significantly limited mainly due to the stressful 

interactions with the current urban infrastructure that they suffer in their daily trips [3-5]. While seniors’ 

physical and cognitive capabilities are impaired as a result of the natural aging process [6], many 

environmental barriers in the current urban infrastructure, such as steep uphill climbs, curbs without 

ramps, and complex traffic signage, pose excessive physical or cognitive demands on seniors, thereby 

inducing stress in their daily trips [3-5]. As a result, several indices of mobility such as frequency and 

distance of daily trips represent limitations in seniors’ mobility [7]. Such limited mobility has caused 

diverse social issues related to seniors’ health and social engagement [8-11].  

To monitor and address the seniors’ stress in their daily interaction with the built environment, 

previous approaches have mainly relied on manual surveys [12-14]. Although these survey-based 

approaches have contributed to identifying different types of the environmental barriers that seniors 

self-report, they might be limited in field applicability for several reasons. First, these methods require 

seniors’ active participation (e.g., attending surveys and self-reporting), thereby interfering with their 
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daily lives. Also, the survey-based methods are generally conducted in a discontinuous and periodic 

manner with an interval (e.g., once a half year or once a year) so that may miss a number of 

environmental barriers that are time-dependent (e.g., snowy sidewalks and rain puddles on streets). 

Recent advancements and the prevalence of wearable biosensors can open a door toward a new urban 

sensing that monitors people’s stress in their daily trips. Wearable biosensors can be used as a means to 

less-invasively and continuously measure stress because human sympathetic nervous system aroused 

by the stress introverts several physiological activities such as eccrine sweat production and cardiac 

activity, which could be measured using physiological signals (e.g., electrodermal activity [EDA], skin 

temperature and photoplethysmogram) [15]. In this sense, several recent studies have proposed to apply 

wearable biosensors to understand people’s stress in their daily lives such as driving [16-18], office 

work [19], field work [20], and walking [21,22]. To understand stress based on physiological signals 

collected by wearable biosensors, the previous studies trained and validated a machine learning 

classifier. Although these studies showed that wearable biosensors could be applied to identify people’s 

stress in a naturalistic setting, there are several limitations. First, these studies applied batch-learning 

algorithms to create one single classifier to detect different subjects’ stress [23]. Given that wearable 

biosensors would be applied to thousands of citizens as an urban sensing mechanism, one classifier may 

not be able to accurately detect the numerous citizens’ stress because people’s physiological response 

to stress can vary among individuals with different characteristics (e.g., ages, gender, body metabolism, 

etc.) [24]. Also, batch-learning algorithms store and use all the previous data to update the single 

classifier every time new data arrives, which will not be computationally practical for an urban sensing 

context due to a large number of subjects. 

To overcome these limitations, the authors apply online multi-task learning (OMTL) algorithms 

[25,26]. Unlike the batch-learning algorithms that train one single classifier for the entire dataset, OMTL 

algorithms train multiple classifiers corresponding to the number of tasks in the dataset. At every input 

of each data point, OMTL algorithms update parameters of classifiers as well as the task interaction 

matrix that contain information about different tasks’ similarity [27]. Specifically, once a data point is 

input from a task, OMTL algorithms first update the parameters of a classifier trained for the task. Then, 

other classifiers are also updated based on the input data point having similarity with the task classifier 

as a learning rate, which could be acquired from the task interaction matrix. The final step is to update 

the interaction matrix based on the similarities between newly updated parameters of different 

classifiers. Since OMTL algorithms learn multiple classifiers for each task (each subject in this study), 

more accurate detection of stress for multiple subjects can be expected. Also, the OMTL algorithms are 

basically the online learning algorithms that update classifiers at every input of data points. Therefore, 

there is no need to store and use all the previous data to update classifiers for newly arrived data. 

However, the feasibility of OMTL algorithms to understand people’s stress from physiological signals 

collected by wearable biosensors in a daily trip setting has not been well studied. Although a recent 

study tested the OMTL algorithms to understand construction workers’ stress [28], this study used the 

brainwave data collected by wearable-type electroencephalography sensor (EEG) that might not be 

applicable to people’s daily lives. To fill the gap, the objective of this study is to test the feasibility of 

the OMTL algorithms to detect multiple seniors’ stress from physiological signals collected by a less-

invasive wristband-type biosensor.  

2. OMTL-BASED SENIORS’ STRESS DETECTION

Figure 1. Steps of the OMTL and wearable biosensor-based stress detection for multiple seniors 

Figure 1 shows a procedure of the OMTL and wearable biosensor-based stress detection for multiple 

seniors. First, multiple senior individuals’ physiological signals were collected using a wristband-type 
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biosensor. Then, noises contained in the collected physiological signals were alleviated by applying the 

moving average and high-pass filter. After reducing physiological signal noises, several features were 

extracted in time and frequency domain to understand patterns of physiological signals. Finally, several 

OMTL algorithms were applied to train a model to predict multiple different seniors’ stress. A more 

detailed explanation of each step is given below. 

2.1. Wearable biosensing 

As the first step, multiple senior individuals’ physiological signals were acquired using a wristband-

type biosensor. The authors collected EDA to measure seniors’ stress. EDA shows the changes in 

electrical conductance of the skin in response to eccrine sweat gland activity [24]. Since eccrine sweat 

gland is a representative organ that well reflects arousal in sympathetic nervous system induced by 

stress, the EDA has been widely used to measure human stress. Also, EDA could be continuously and 

less-invasively collected from people’s skin in daily trip contexts. 

2.2. Artifact removal 

Acquired EDA from uncontrolled and ambulatory settings contains several noises such as noises that 

come from subjects’ body movements and electromagnetic fields [24,29]. Since such noises could 

compromise the accuracy of detecting stress by distorting values of extracted features from EDA, noise 

removal is a critical step for accurate detection of stress [30]. The authors applied a moving average 

filter to remove high-frequency noises such as noises resulting from body movements and surrounding 

electromagnetic fields [20]. A high-pass filter with the cut-off frequency of 0.05 Hz was also applied to 

suppress high-frequency noises (e.g., noises caused by variation in temperature, humidity, and 

impedance of sensor’s electrodes) [33]. 

2.3. Feature extraction 

To extract features, EDA was decomposed into two components-electrodermal level (EDL) and 

electrodermal response (EDR). EDL is a slowly changing component that includes spontaneous 

fluctuations of EDA [24]. Contrarily, EDR is a fast-changing component that reflects immediate body 

response to stress [24]. Features were extracted from both EDL and EDR [24]. As a second step, the 

continuous EDL and EDR were segmented into data points by a window of ten seconds length with one 

second moving spans. Ten-second window size was selected due to the reactivity of EDA to stress 

generally spans ten seconds including a latency period [20].  Eleven time domain features and three 

frequency domain features were extracted from segmented EDL and EDR.  In this research, the features 

were selected from the literature on EDA-based stress identification [21,23,32,33] (Table 1). 

Specifically, three traditional statistics (i.e., mean, median, and standard deviation) were selected to 

describe the statistical characteristics of each data segment [21,23,32]. Also, three morphological 

features (i.e., Integral, Power, and Normalized root mean square) were defined for characterizing the 

signal wave shape using the following three equations (Equation 1-3) [23,32]. Two features (i.e., mean 

and variability of intensity overall phasic width) were also extracted to understand EDR’s morphology 

using sparse representation [34]. The sparse representation technique decomposes EDR into multiple 

atoms from a pre-designed dictionary that well reflects the specific shapes of stress response in EDR 

[34]. In addition, three spectral power features were used to understand the different patterns in 

frequency domain according to the different levels of stress [23,32]. 
 

Integral =  ∑ 𝑒𝑑𝑟(𝑛)
𝑁

𝑛=1
 (1) 

Power =
1

n
∑ 𝑒𝑑𝑟2(𝑛)

𝑁

𝑛=1
 (2) 

Normalized root mean square = (
1

n
∑ 𝑒𝑑𝑟2(𝑛)

𝑁

𝑛=1
)

2

 (3) 
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Table 1. The features extracted from EDA 

Component Type Features 

EDL Time feature Mean, Median, SD 

EDR Time feature Mean, Median, SD, Integral, Power, Normalized root mean 

square, Mean intensity overall phasic width, Variability of 

intensity overall phasic width 

Frequency 

feature 

Spectral power (0.1 to 0.2 Hz), Spectral power (0.2 to 0.3 Hz), 

Spectral power (0.3 to 0.4 Hz) 

 

2.4. OMTL 

The authors applied all OMTL algorithms developed to date (i.e., OMTL-LogDet, OMTL-von 

Neumann, and OMTL-Covariance [25,26]) to identify multiple different seniors’ stress from EDA. The 

three OMTL algorithms have different rules for updating the interaction matrix. Here, different subjects 

were considered as different tasks. For benchmarking purpose, the authors compared the performance 

of the OMTL algorithms with two baselines. The first baseline was a traditional batch-learning 

algorithm. Gaussian support vector machine (GSVM) was used as the batch-learning algorithm because 

GSVM has demonstrated the best performance in detecting stress based on physiological signals 

collected by a wearable sensor in previous studies [35-37]. The authors applied GSVM in an online 

setting (repeat updating a classifier based on all the previous data at each input of data point) to compare 

its performance with OMTL algorithms. By comparing OMTL algorithms with GSVM, it would be 

examined whether training multiple different classifiers according to different tasks can more accurately 

detect stress than training one single classifier. The second baseline is the K independent task classifiers 

(ITL) where K different classifiers are trained according to different tasks unlike batch-learning 

algorithms, but there is no cross update between classifiers based on a similarity between tasks. 

Comparison between ITL and OMTL algorithms can show the benefits from cross update between 

classifiers of similar tasks. 

Table 2 shows the pseudocode of the tested OMTL algorithms. OMTL algorithms jointly update 

parameters of classifiers (𝑤𝑡) and task relationship matrix (𝐴𝑡). First, 𝐴𝑡=0 and 𝑤𝑡=0 are initialized (1 

in Table 2). Then, when a new data point arrives, its label is estimated using 𝑤𝑡 (2 in Table 2). Once the 

estimation fails, parameters of all classifiers (𝑤𝑡) are updated considering the task interaction matrix 

(𝐴𝑡) (3a in Table 2). Then, 𝐴𝑡 is also updated based on the newly updated 𝑤𝑡 (3b in Table 2). The update 

of 𝐴𝑡 starts after waiting for a number of rounds, which is determined based on Epoch because of the 

parameter 𝑤𝑡  are not well formed during the initial rounds, which lead to poor estimates of 𝐴𝑡. 
 

Table 2. Pseudocode of OMTL algorithms 

1. 𝐴𝑡=0 =
1

𝐾
∗ 𝐼𝐾×𝐾 and 𝑤𝑡=0 = 01×𝐾𝑚 and 𝑡 = 0 

2. L(𝑥𝑡, 𝑘𝑡  ) = 𝑆𝑖𝑔𝑛(𝑤𝑡,𝑘𝑡

𝑇 𝑥𝑡) 

3. If L(𝑥𝑡, 𝑘𝑡  )  ≠  𝑦𝑡 

    a. 𝑤𝑡,𝑖 = 𝑤𝑡−1,𝑖 + 𝑦𝑡𝐴𝑖,𝑘𝑡

−1 𝑥𝑡 ∀𝑖 ∈ {1,2, ⋯ , 𝐾} 

    b. If 𝑡 ≥ 𝐸𝑝𝑜𝑐ℎ × 𝑛, then update 𝐴𝑡 using (1), (2), (3) 

    c. Else, 𝐴𝑡 =  𝐴𝑡 

4. Else, 𝑤𝑡,𝑖 = 𝑤𝑡,𝑖 ∀𝑖 ∈ {1,2, ⋯ , 𝐾} and 𝐴𝑡 =  𝐴𝑡 

5. 𝑡 = 𝑡 + 1 

𝐾: the number of tasks 

𝑥𝑡: data point at time t 

𝑘𝑡: task of data point at time t 

𝑦𝑡: true label of data point at time t 

𝑤𝑡 = [𝑤𝑡,1, 𝑤𝑡,2, ⋯ , 𝑤𝑡,𝐾]: parameters for all classifiers 

n: number of total data points 

 

The authors applied three OMTL algorithms with different rule of updating task interaction matrix 

(𝐴𝑡) as illustrated in equations (1)-(3). There are two parameters of OMTL algorithms, Epoch and 

learning rate. Epoch indicates the rate of waiting rounds before updating 𝐴𝑡. 𝜂 denotes the learning rate 

for the 𝐴𝑡 update. In this study, Epoch and 𝜂 were optimized by 0.6 and 10-15.5 respectively based on the 

prior experimental results. 
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1. OMTL-LogDet: 𝐴𝑡 = (𝐴𝑡−1
−1 + 𝜂(𝑤𝑡−1

𝑇 𝑤𝑡−1))
−1

, 𝜂: learning rate (1) 

2. OMTL-von Neumann: 𝐴𝑡 = exp(log(𝐴𝑡−1) − 𝜂𝑤𝑡−1
𝑇 𝑤𝑡−1), 𝜂: learning rate (2) 

3. OMTL-Covariance: 𝐴𝑡 = cov(𝑤𝑡−1) (3) 

 

The test accuracy was compared among all applied algorithms. Specifically, the dataset was first 

undersampled for balance between classes. When the EDA data are imbalanced, which means that the 

number of data points in a class is much more than that of other class, the resultant classifier would be 

inaccurate to predict the minority class. Random permutation was also conducted because the input 

order of data points could affect the test accuracy. Then, the permuted dataset was randomly divided 

into 80% training session and 20% testing session without any overlap. All the tested algorithms were 

applied to train and update classifiers using data points sequentially taken from the training session. At 

every input of each data point, the updated classifiers’ test accuracy was measured based on the testing 

session. After completing the update using all the data points, the test accuracy was averaged. This 

‘undersampling-permutation-holdout test’ procedure was repeated 20 times and reported test accuracy 

was calculated by averaging the 20 trials to make sure that the results reflected the general performance 

of the tested algorithms, not the performance in a randomly undersampled, generated and permuted 

subset of data. 

3. FIELD DATA COLLECTION 

The ten mobile senior subjects were recruited for the field data collection from Clark East Tower senior 

apartment located in Ypsilanti Township, Michigan. Data collection protocol was approved by the 

University of Michigan Institutional Review Board (IRB00000245). The informed consent forms were 

distributed to make all the subjects informed about the anonymity of data collection and their rights. 

They were also asked to report their mental health issues. None of the subjects reported any mental 

issues that can affect stress detection based on physiological signals. To account for variability of senior 

population in physical capability, five seniors depending on a walker or scooter as an assistive device 

were included in the subject group. Table 3 summarizes the subjects’ demographic information. 

 

Table 3. Subjects’ Demographic Information 

Item Age (years) Height (cm) Weight (kg) Assistive Device Use 

Mean (SD) 68.1 (5.79) 168.3 (8.7) 81.7 (8.4) Walker 4, Scooter 1, No use 5 

 

In the field data collection, the subjects were asked to walk over a predesigned route on which there 

was a series of 12 environmental barriers, including curbs without ramps and unpaved sidewalks (Figure 

2). The series of environmental barriers were determined by authors based on previous studies that 

identified the typical environmental barriers where seniors get stressed in the current urban 

infrastructure [4,39]. While the subject passed along the route, their EDA signal was collected at 4 Hz 

sampling rate using a wristband-type biosensor. During the experiment, participants were video 

recorded for labeling purposes. After subjects completed the route, the researchers surveyed whether 

the subjects actually became stressed or not on each environmental barrier in a binary manner (i.e., stress 

or non-stress). To reduce the recall bias, the authors showed pictures of all the environmental barriers. 

After the data collection, the collected EDA signals were labeled into stress or non-stress based on the 

result of the stress survey as well as the recorded video. The authors excluded EDA signals collected 

when the subjects experienced unintended stressors such as interaction with vehicles or other people 

and loss of balance while walking. Then, EDA signals acquired while subjects passed over 

environmental barriers that they confirmed as a stressor in the survey were labeled as “stress.” 
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Figure 2. Environmental barriers in data collection 

4. RESULTS AND DISCUSSIONS

As a result of field data collection, 23,627 data points were collected. Among them, 1,936 data points 

were labeled as stress, and other 21,691 data points were labeled as non-stress. Due to such imbalance, 

balanced 3,872 data points (the whole 1,936 stress data points, and 1,936 undersampled non-stress data 

points) were generated by undersampling as a first step of the ‘undersampling-permutation-holdout test’ 

procedure. The confusion matrices for different algorithms are reported in Table 4. Three performance 

metrics were used: accuracy, precision, and recall. Accuracy indicates the tested algorithms’ overall 

performance to correctly classify whole samples. Precision means the performance to exclude actual 

“non-stress” samples from “stress” class, while recall is the performance to include actual “stress” 

samples in “stress” class. 

The batch-learning algorithm (GSVM) showed the lowest test accuracy (64.8%). Compared with the 

batch-learning algorithm, ITL performs better with a prediction accuracy of 70.6%. This result shows 

that independently training ten different classifiers for ten different subjects will lead to more accurate 

stress detection. This may be explained by the fact that the one classifier trained by the batch-learning 

algorithm could not enough account for the ten subjects’ different physiological reactivity to stress. 

Table 4. Confusion matrices of the tested algorithms 

Batch-learning (GSVM) 

Accuracy: 64.8% 
True Class 

Precision Recall 
High Risk Low Risk 

Predicted 

Class 

High-Risk 28.2% 13.7% 
67.4% 57.1% 

Low-Risk 21.8% 36.3% 

Independent Task classifiers (ITL) 

Accuracy: 70.6% 
True Class 

Precision Recall 
High Risk Low Risk 

Predicted 

Class 

High-Risk 39.6% 18.7% 
68.0% 78.7% 

Low-Risk 10.7% 31.0% 

OMTL LogDet 

Accuracy: 75.7% 
True Class 

Precision Recall 
High Risk Low Risk 

Predicted 

Class 

High-Risk 38.3% 12.0% 
76.2% 75.6% 

Low-Risk 12.4% 37.3% 

OMTL von-Neumann 

Accuracy: 76.2% 
True Class 

Precision Recall 
High Risk Low Risk 

Predicted 

Class 

High-Risk 38.2% 11.9% 
76.2% 76.3% 

Low-Risk 11.9% 38.0% 

OMTL Covariance 

Accuracy: 71.2% 
True Class 

Precision Recall 
High Risk Low Risk 

Predicted 

Class 

High-Risk 39.4% 18.0% 
68.6% 78.5% 

Low-Risk 10.8% 31.8% 
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All the applied OMTL algorithms brought higher test accuracy (75.7% for OMTL-LogDet, 76.2% 

for OMTL-von Neumann, and 71.2% for OMTL-Covariance) than both ITL and the batch-learning 

algorithm. It indicates that cross update between different classifiers, which the OMTL algorithms 

conducted based on the similarity between their tasks, helps train all the classifiers, thereby bringing 

better test accuracy than training each classifier independently. Among different OMTL algorithms, test 

accuracy of the OMTL von-Neumann and OMTL LogDet were higher (76.2% and 75.7% respectively) 

than OMTL Covariance. This result coincides with the result of [28], which applied OMTL to detect 

stress based on EEG signals. Given that OMTL Covariance showed comparable performance to other 

OMTL algorithms in tasks using text data [26], the better performance of OMTL von-Neumann and 

OMTL LogDet in this study may be because of the more robust performance of these two algorithms 

when dealing with outliers in physiological signals such as EDA and EEG due to the exponential and 

reciprocal updating [28]. 

 

 

Figure 3. Computational time of tested algorithms 

 

In addition to accuracy, all the tested algorithms’ computational time was examined to compare 

computational complexity. Figure 3 shows the computational time of every update. The reported 

computational time was calculated by averaging 20 times of trainings. As a result, the traditional batch 

learning algorithm in an online setting spent significantly higher computational time than the OMTL 

algorithms and ITL. Also, the batch learning algorithm’s computational time increased with every 

update while those of OMTL algorithms stayed within a certain range. This can be explained by the fact 

that the batch learning algorithms require all the previous data points for each update, and the number 

of data points in the batch increased by one at every update. Given that data size in urban sensing 

contexts is, in general, far bigger than the data collected in this study, such increase in computational 

complexity according to the number of data points indicates that the batch learning algorithms might be 

less practical in urban sensing contexts. ITL showed the least computational complexity, which can be 

expected because ITL does not update interaction matrix unlike OMTL algorithms. There was no 

significant difference among OMTL algorithms. 

The results of this study indicate that the OMTL algorithms can more accurately detect multiple 

seniors’ stress from EDA collected by a wristband-type biosensor in a daily trip setting than traditional 

batch-learning algorithms. Also, OMTL algorithms showed less computational complexity than the 

traditional batch learning algorithm. Since the OMTL algorithms do not need to store and use all 

previous data for updating their classifiers, they are less computationally complex than traditional batch-

learning algorithms. Lower computational cost and time of these algorithms make them a better fit for 

the urban sensing to extensively identify seniors’ stress in the urban environment. 

Finally, a number of important limitations need to be considered. First, the simple perceptron was 

used for as a base learning algorithm (3a in Table 2) in the OMTL algorithms in this study. More 

sophisticated parametric algorithms such as the kernel perceptron have been developed to train a 

classifier in an online setting [39]. The future studies will additionally apply such algorithms for the 

classifier update to increase the performance of OMTL algorithms. Second, this study was conducted 

based on a small sample of senior population (i.e., 10 subjects). Given that the stress detection would 

be applied in urban scale, how the proposed OMTL-based stress detection performs with a larger sample 
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of senior population needs to be examined in a future study. Specifically, the sample of senior population 

should exhibit considerable variability in age, physical conditions, and assistive device use to make sure 

generalization of the proposed stress detection. Third, although only different subjects were dealt as 

different tasks in this study, different outdoor conditions such as temperature and a level of humidity 

should be considered as different tasks as well because EDA signal’s reactivity to stress varies according 

to such outdoor conditions [24]. Future research is needed to examine whether OMTL algorithms can 

accurately detect stress under different outdoor conditions as well as different subjects. Lastly, although 

OMTL algorithms can significantly improve the practicality of wearable-based stress detection by 

working without storing and using all the previous data, still data from all users needs to be labeled, 

which is another critical hurdle to apply wearable-based stress detection in urban sensing contexts. To 

address the labeling burden, how stress detection models can be applied for a new person who is not 

involved in training should be studies in future research. 

5. CONCLUSION 

The traditional batch-learning algorithms could not be applied for the urban sensing to detect thousands 

of seniors’ stress in daily trips because they depend on one classifier and require much computational 

power to store and re-use all the previous data for updating the classifier. To address this issue, the 

authors tested the feasibility of OMTL algorithms to detect stress based on different seniors’ EDA 

signals collected by a wearable biosensor in a daily trip setting. Specifically, EDA signals labeled as 

stress or non-stress were collected from ten senior subjects while experiencing a predesigned route on 

which there was a series of environmental barriers. Based on the EDA signals, the test accuracy of three 

OMTL algorithms were compared with a traditional batch-learning algorithm (i.e., GSVM). As a result, 

all OMTL algorithms showed higher test accuracy (75.7% for OMTL-LogDet, 76.2% for OMTL-von 

Neumann, and 71.2% for OMTL-Covariance) than the batch-learning algorithm (64.8%). This result 

indicates that the OMTL algorithms are more feasible than the batch-learning algorithms to accurately 

detect multiple seniors’ stress in an online manner based on EDA collected by wearable biosensors in a 

daily trip setting. This finding can improve the field applicability of the wearable biosensing-based stress 

monitoring method, thereby contributing to monitoring and addressing seniors’ stress in their daily trips, 

and ultimately advancing their outdoor mobility. 
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