• Title/Summary/Keyword: Biometric Data

Search Result 272, Processing Time 0.024 seconds

Prediction of Calf Diseases using Ontology and Bayesian Network (온톨로지와 베이지안 네트워크를 활용한 송아지 질병 예측)

  • Kang, Yun-Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1898-1908
    • /
    • 2017
  • Accurately Diagnosing and managing disease in livestock can help sustainable livestock productivity and maintain human health. Maintaining the health of livestock is an important part of human health. The prediction of calf diseases is carried out by pre-processing the calf biometric data. calf information is used as information for calf birth history, calf biometric information, environmental information on housing, and disease management. It can be developed as an ontology and used as a knowledge base. The Bayesian network was used and inferred in the process of analyzing the correlations of calf diseases. Prediction of diseases based on knowledge of calf disease on calf diseases name, causes, occur timing, care and symptoms, etc., will be able to respond to accurate disease treatment and prevent other livestock from being infected in advance.

Nomogram Estimating the Probability of Intraabdominal Abscesses after Gastrectomy in Patients with Gastric Cancer

  • Eom, Bang Wool;Joo, Jungnam;Kim, Young-Woo;Park, Boram;Yoon, Hong Man;Ryu, Keun Won;Kim, Soo Jin
    • Journal of Gastric Cancer
    • /
    • v.15 no.4
    • /
    • pp.262-269
    • /
    • 2015
  • Purpose: Intraabdominal abscess is one of the most common reasons for re-hospitalization after gastrectomy. This study aimed to develop a model for estimating the probability of intraabdominal abscesses that can be used during the postoperative period. Materials and Methods: We retrospectively reviewed the clinicopathological data of 1,564 patients who underwent gastrectomy for gastric cancer between 2010 and 2012. Twenty-six related markers were analyzed, and multivariate logistic regression analysis was used to develop the probability estimation model for intraabdominal abscess. Internal validation using a bootstrap approach was employed to correct for bias, and the model was then validated using an independent dataset comprising of patients who underwent gastrectomy between January 2008 and March 2010. Discrimination and calibration abilities were checked in both datasets. Results: The incidence of intraabdominal abscess in the development set was 7.80% (122/1,564). The surgical approach, operating time, pathologic N classification, body temperature, white blood cell count, C-reactive protein level, glucose level, and change in the hemoglobin level were significant predictors of intraabdominal abscess in the multivariate analysis. The probability estimation model that was developed on the basis of these results showed good discrimination and calibration abilities (concordance index=0.828, Hosmer-Lemeshow chi-statistic P=0.274). Finally, we combined both datasets to produce a nomogram that estimates the probability of intraabdominal abscess. Conclusions: This nomogram can be useful for identifying patients at a high risk of intraabdominal abscess. Patients at a high risk may benefit from further evaluation or treatment before discharge.

A Detection Method of Fake Fingerprint in Optical Fingerprint Sensor (광학식 지문센서에서의 위조 지문 검출 방법)

  • Lee, Ji-Sun;Kim, Jae-Hwan;Chae, Jin-Seok;Lee, Byoung-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.492-503
    • /
    • 2008
  • With the recent development and increasing importance of personal identification systems, biometric technologies with less risk of loss or unauthorized use are being popularized rapidly. In particular, because of their high identification rate and convenience, fingerprint identification systems are being used much more commonly than other biometric systems such as iris recognition, face recognition and vein pattern recognition. However, a fingerprint identification system has the problem that artificially forged finger-prints can be used as input data. Thus, in order to solve this problem, the present study proposed a method for detecting forged fingerprints by measuring the degree of attenuation when the light from an optical fingerprint sensor passes through the finger and analyzing changes in the transmission of light over stages at fixed intervals. In order to prove improvement in the performance of the proposed system, we conducted an experiment that compared the system with an existing multi-sensor recognition system that measures also the temperature of fingerprint. According to the results of the experiment, the proposed system improved the forged fingerprint detection rate by around 32.6% and this suggests the possibility of solving the security problem in fingerprint identification systems.

  • PDF

A Study on Intelligent Emotional Recommendation System Using Biological Information (생체정보를 이용한 지능형 감성 추천시스템에 관한 연구)

  • Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.215-222
    • /
    • 2021
  • As the importance of human-computer interaction (Human Computer Interface) technology grows and research on HCI is progressing, it is inferred about the research emotion inference or the computer reaction according to the user's intention, not the computer reaction by the standard input of the user. Stress is an unavoidable result of modern human civilization, and it is a complex phenomenon, and depending on whether or not there is control, human activity ability can be seriously changed. In this paper, we propose an intelligent emotional recommendation system using music as a way to relieve stress after measuring heart rate variability (HRV) and acceleration photoplethymogram (APG) increased through stress as part of human-computer interaction. The differential evolution algorithm was used to extract reliable data by acquiring and recognizing the user's biometric information, that is, the stress index, and emotional inference was made through the semantic web based on the obtained stress index step by step. In addition, by searching and recommending a music list that matches the stress index and changes in emotion, an emotional recommendation system suitable for the user's biometric information was implemented as an application.

A Study on Portable Weighing Scales Applicable to Poultry Farms (가금류 농장에 적용 가능한 이동식 중량 저울에 관한 연구)

  • Park, Sung Jin;Park, In Ji;Kim, Jin Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.2
    • /
    • pp.155-159
    • /
    • 2022
  • Smart livestock, which combines information and communication technology (ICT) with livestock, can be said to be an effective solution to existing livestock problems such as productivity improvement, odors, and diseases. So far, it has hardly been universalized; thus, it is necessary to develop automation devices to reduce labor by localizing automation devices to expand the distribution of ICT technology to farms, and to advance precise specifications and health management technology using biometric information. Weighing scales currently being used in livestock farms are to prevent the spread of diseases by diagnosis and preparation for AI and other diseases in advance, using information on the growing weight of duck breeding. However, accurate values cannot be obtained due to poor breeding conditions. In this paper, we developed a separate data transmission system kit for the weighing scale and placed the sensor on top of the weighing scale so that the sensor wire is not affected by pollutants or ducks on the floor. A display function was provided, and a method of receiving and analyzing the serial port data of the weighing device, and then transmitting them to the data collection server was implemented.

A Study on the Recognition of Face Based on CNN Algorithms (CNN 알고리즘을 기반한 얼굴인식에 관한 연구)

  • Son, Da-Yeon;Lee, Kwang-Keun
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • Recently, technologies are being developed to recognize and authenticate users using bioinformatics to solve information security issues. Biometric information includes face, fingerprint, iris, voice, and vein. Among them, face recognition technology occupies a large part. Face recognition technology is applied in various fields. For example, it can be used for identity verification, such as a personal identification card, passport, credit card, security system, and personnel data. In addition, it can be used for security, including crime suspect search, unsafe zone monitoring, vehicle tracking crime.In this thesis, we conducted a study to recognize faces by detecting the areas of the face through a computer webcam. The purpose of this study was to contribute to the improvement in the accuracy of Recognition of Face Based on CNN Algorithms. For this purpose, We used data files provided by github to build a face recognition model. We also created data using CNN algorithms, which are widely used for image recognition. Various photos were learned by CNN algorithm. The study found that the accuracy of face recognition based on CNN algorithms was 77%. Based on the results of the study, We carried out recognition of the face according to the distance. Research findings may be useful if face recognition is required in a variety of situations. Research based on this study is also expected to improve the accuracy of face recognition.

User Authentication Using Accelerometer Sensor in Wrist-Type Wearable Device (손목 착용형 웨어러블 기기의 가속도 센서를 사용한 사용자 인증)

  • Kim, Yong Kwang;Moon, Jong Sub
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • This paper proposes a method of user authentication through the patterns of arm movement with a wrist-type wearable device. Using the accelerometer sensor which is built in the device, the 3-axis accelerometer data are collected. Then, the collected data are integrated and the periodic cycle are extracted. In the cycle, the features of frequency are generated with the accelerometer. With the frequency features, 2D Gaussian mixture are modelled. For authenticating an user, the data(the accelerometer) of the user at some point are tested with confidence interval of the Gaussian distribution. The model showed a valuable results for the user authentication with an example, which is average 92% accuracy with 95% confidence interval.

Software Implementation for 3D visualization of brain fiber tractography and high-resolution anatomical data

  • Oh, Jung-Su;Song, In-Chan;Ikhwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.32-32
    • /
    • 2003
  • The purpose of paper is to implement a PC-based software for 3D visualization of brain fiber tractography and high-resolution anatomical data 서론: DTI (Diffusion tensor imaging) is a very useful noninvasive MRI technique for providing the direction and connectivity information of brain fiber tracts. Especially in patients with glioma, fiber tracts on the lesion side in the brain had varying degrees of displacement or disruption as a result of the tumor. Tract disruption resulted from direct tumor involvement, compression on the tract, and vasogenic edema surrounding the tumor. To combine information on fiber tracts surrounding turner with a high-resolution anatomical 3D image may be clinically useful for surgical planning. Therefore we implemented a software for visualizing both brain fiber tractography and anatomical data.

  • PDF

Software Implementation for 3D visualization of brain fiber tractography and high-resolution anatomical data

  • Oh, Jung-Su;Song, In-Chan;Ikhwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.83-83
    • /
    • 2003
  • Purpose: The purpose of paper is to implement a PC-based software for 3D visualization of brain fiber tractography and high-resolution anatomical data introduction: DTI (Diffusion tensor imaging) is a very useful noninvasive MRI technique for providing the direction and connectivity information of brain fiber tracts. Especially in patients with glioma, fiber tracts on the lesion side in the brain had varying degrees of displacement or disruption as a result of the tumor. Tract disruption resulted from direct tumor involvement, compression on the tract, and vasogenic edema surrounding the tumor. To combine information on fiber tracts surrounding tumor with a high-resolution anatomical 3D image may be clinically useful for surgical planning. Therefore we implemented a software for visualizing both brain fiber tractography and anatomical data.

  • PDF

Development of Big Data-based Cardiovascular Disease Prediction Analysis Algorithm

  • Kyung-A KIM;Dong-Hun HAN;Myung-Ae CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2023
  • Recently, the rapid development of artificial intelligence technology, many studies are being conducted to predict the risk of heart disease in order to lower the mortality rate of cardiovascular diseases worldwide. This study presents exercise or dietary improvement contents in the form of a software app or web to patients with cardiovascular disease, and cardiovascular disease through digital devices such as mobile phones and PCs. LR, LDA, SVM, XGBoost for the purpose of developing "Life style Improvement Contents (Digital Therapy)" for cardiovascular disease care to help with management or treatment We compared and analyzed cardiovascular disease prediction models using machine learning algorithms. Research Results XGBoost. The algorithm model showed the best predictive model performance with overall accuracy of 80% before and after. Overall, accuracy was 80.0%, F1 Score was 0.77~0.79, and ROC-AUC was 80%~84%, resulting in predictive model performance. Therefore, it was found that the algorithm used in this study can be used as a reference model necessary to verify the validity and accuracy of cardiovascular disease prediction. A cardiovascular disease prediction analysis algorithm that can enter accurate biometric data collected in future clinical trials, add lifestyle management (exercise, eating habits, etc.) elements, and verify the effect and efficacy on cardiovascular-related bio-signals and disease risk. development, ultimately suggesting that it is possible to develop lifestyle improvement contents (Digital Therapy).