• Title/Summary/Keyword: Biomedicine

Search Result 301, Processing Time 0.032 seconds

Subcritical water extraction of Gracilaria chorda abbreviates lipid accumulation and obesity-induced inflammation

  • Laxmi Sen Thakuri;Chul Min Park;Jin Woo Park;Hyeon-A Kim;Dong Young Rhyu
    • ALGAE
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • Obesity-induced inflammation is crucial in the pathogenesis of insulin resistance and type 2 diabetes. In this study, we investigated the effects of the Gracilaria chorda (GC) on lipid accumulation and obesity-induced inflammatory changes or glucose homeostasis in cell models (3T3-L1 adipocytes and RAW 264.7 macrophages). Samples of GC were extracted using solvents (water, methanol, and ethanol) and subcritical water (SW) at different temperatures (90, 150, and 210℃). The total phenolic content of GCSW extract at 210℃ (GCSW210) showed the highest content compared to others, and GCSW210 highly inhibited lipid accumulation and significantly reduced gene expressions of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein-α, sterol regulatory element-binding protein-1c, and fatty acid synthase in 3T3-L1 adipocytes. In addition, GCSW210 effectively downregulated the pro-inflammatory cytokine regulator pathways in RAW 264.7 macrophages, including mitogen-activated protein kinase, signal transducers and activators of transcription and nuclear factor-κB. In co-culture of 3T3-L1 adipocytes and RAW 264.7 macrophages, GCSW210 significantly reduced nitric oxide production and interleukin-6 levels, and improved glucose uptake with dose-dependent manner. These findings suggest that GCSW210 improves glucose metabolism by attenuating obesity-induced inflammation in adipocytes, which may be used as a possible treatment option for managing obesity and associated metabolic disorders.

Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells

  • Dahee Jeong;Yukyeong Lee;Seung-Won Lee;Seokbeom Ham;Minseong Lee;Na Young Choi;Guangming Wu;Hans R. Scholer;Kinarm Ko
    • Molecules and Cells
    • /
    • v.46 no.4
    • /
    • pp.209-218
    • /
    • 2023
  • In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method which can produce homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.

Basic study on high gradient magnetic separation of nano beads using superconducting magnet for antibody purification

  • Jeongtae Kim;Insung Park;Gwantae Kim;Myunghwan Sohn;Sanghoon Lee;Arim Byun;Jin-sil Choi;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.60-64
    • /
    • 2023
  • The manufacturing process of antibody drugs comprises two main stages: the upstream process for antibody cultivation and the downstream process for antibody extraction. The domestic bio industry has excellent technology for the upstream process. However, it relies on the technology of foreign countries to execute downstream process such as affinity chromatography. Furthermore, there are no domestic companies capable of producing the equipment for affinity chromatography. High gradient magnetic separation technology using a high temperature superconducting magnet as a novel antibody separation and purification technology is introduced to substitute for the traditional technology of affinity chromatography. A specially designed magnetic filter was equipped in the bore of the superconducting magnet enabling the continuous magnetic separation of nano-sized paramagnetic beads that can be used as affinity magnetic nano beads for antibodies. To optimize the magnetic filter that captures superparamagnetic nanoparticles effectively, various shapes and materials were examined for the magnetic filter. The result of magnetic separation experiments show that the maximum separation and recovery ratio of superparamagnetic nanoparticles are 99.2 %, and 99.07 %, respectively under magnetic field (3 T) and flow rate (600 litter/hr).

A Comprehensive Analysis of Deformable Image Registration Methods for CT Imaging

  • Kang Houn Lee;Young Nam Kang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.303-314
    • /
    • 2023
  • This study aimed to assess the practical feasibility of advanced deformable image registration (DIR) algorithms in radiotherapy by employing two distinct datasets. The first dataset included 14 4D lung CT scans and 31 head and neck CT scans. In the 4D lung CT dataset, we employed the DIR algorithm to register organs at risk and tumors based on respiratory phases. The second dataset comprised pre-, mid-, and post-treatment CT images of the head and neck region, along with organ at risk and tumor delineations. These images underwent registration using the DIR algorithm, and Dice similarity coefficients (DSCs) were compared. In the 4D lung CT dataset, registration accuracy was evaluated for the spinal cord, lung, lung nodules, esophagus, and tumors. The average DSCs for the non-learning-based SyN and NiftyReg algorithms were 0.92±0.07 and 0.88±0.09, respectively. Deep learning methods, namely Voxelmorph, Cyclemorph, and Transmorph, achieved average DSCs of 0.90±0.07, 0.91±0.04, and 0.89±0.05, respectively. For the head and neck CT dataset, the average DSCs for SyN and NiftyReg were 0.82±0.04 and 0.79±0.05, respectively, while Voxelmorph, Cyclemorph, and Transmorph showed average DSCs of 0.80±0.08, 0.78±0.11, and 0.78±0.09, respectively. Additionally, the deep learning DIR algorithms demonstrated faster transformation times compared to other models, including commercial and conventional mathematical algorithms (Voxelmorph: 0.36 sec/images, Cyclemorph: 0.3 sec/images, Transmorph: 5.1 sec/images, SyN: 140 sec/images, NiftyReg: 40.2 sec/images). In conclusion, this study highlights the varying clinical applicability of deep learning-based DIR methods in different anatomical regions. While challenges were encountered in head and neck CT registrations, 4D lung CT registrations exhibited favorable results, indicating the potential for clinical implementation. Further research and development in DIR algorithms tailored to specific anatomical regions are warranted to improve the overall clinical utility of these methods.

Measurement of atherosclerosis markers in individuals with periodontitis

  • Angar Soronzonbold;Erkhbilguun Munkhkherlen;Khongorzul Batchuluun;Oyun-Enkh Puntsag;Uurtuya Shuumarjav;Bayarchimeg Batbayar
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.1
    • /
    • pp.37-43
    • /
    • 2024
  • Purpose: The inflammatory response due to inflammatory cytokines, bacterial pathogens, and the altered lipoprotein metabolism in patients with periodontitis indicates that infection with periodontal anaerobic bacteria may influence atherogenesis in vitro and in vivo. We aimed to explore the effect of periodontitis concerning clinical and ultrasound markers of early atherosclerosis. Methods: In this case-control study, a total of 30 systemically healthy adults (15 with periodontitis and 15 without periodontitis) over 40 years of age were studied. Periodontitis was determined by measuring the clinical attachment level (CAL) and radiographic bone loss (RBL). Conventional cardiovascular risk factors, including body mass index, serum levels of total cholesterol (TCH), triglycerides (TG), and high-density and low-density lipoprotein (HDL and LDL, respectively) cholesterol were evaluated. Carotid artery intima-media thickness (IMT) was measured using ultrasonography. Results: The mean values of the CAL and carotid IMT were 5.02±0.9 mm and 0.084±0.01 cm vs. 1.6±0.61 mm and 0.072±0.02 cm in the periodontitis and healthy groups, respectively, reflecting statistically significant differences (P=0.001 and P=0.037, respectively). There were statistically significant differences in the serum levels of TCH, TG, and LDL between the 2 groups (P=0.017). The CAL and RBL were positively associated with carotid IMT and serum cholesterol levels, except for HDL, whereas tooth loss was not associated with any markers (P<0.05). Compared to the healthy group, participants with periodontitis exhibited 2.09 times higher odds (95% confidence interval, 1.22-3.59) of having subclinical atherosclerosis. Conclusions: The presence of periodontitis increased the risk of atherosclerosis.

The protective effect of zinc oxide and selenium oxide nanoparticles on the functional parameters of rat sperm during vitrification

  • Nafiseh Tavakolpoor Saleh;Zohreh Hosseinzadeh;Narges Gholami Banadkuki;Maryam Salehi Novin;Sanaz Saljooghi Zaman;Tohid Moradi Gardeshi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.1
    • /
    • pp.20-27
    • /
    • 2024
  • Objective: While sperm freezing (cryopreservation) is an effective method for preserving fertility, it can potentially harm the structure and function of sperm due to an increase in the production of reactive oxygen species. This study aimed to assess the impact of zinc oxide nanoparticles (ZnONPs) and selenium oxide nanoparticles (SeONPs) on various sperm functional parameters, including motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), acrosome membrane integrity (ACi), and malondialdehyde (MDA) levels. Methods: Semen samples were collected from 20 Albino Wistar rats. These samples were then divided into six groups: fresh, cryopreservation control, and groups supplemented with SeONPs (1, 2, 5 ㎍/mL) and ZnONPs (0.1, 1, 10 ㎍/mL). Results: Statistical analysis revealed that all concentrations of SeONPs increased total motility and progressive reduction of MDA levels compared to the cryopreservation control group (p<0.05). However, supplementation with ZnONPs did not affect these parameters (p>0.05). Conversely, supplements of 1 and 2 ㎍/mL SeONPs and 1 ㎍/mL ZnONPs contributed to the improvement of PMI and ACi (p<0.05). Yet, no significant change was observed in MMP with any concentration of SeONPs and ZnONPs compared to the cryopreservation control group (p>0.05). Conclusion: The findings suggest that optimal concentrations of SeONPs may enhance sperm parameters during the freezing process.

Effect of carbon sources on somatic embryogenesis and cotyledon number variations in carrot (Daucus carota L.)

  • Young Jin Lee;Kyu Seog Hwang;Pil Son Choi
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.89-95
    • /
    • 2023
  • In order to investigate the effect of carbon sources on somatic embryogenesis and cotyledon number variations in carrot, embryogenic callus were cultured in the medium supplemented with various concentrations of sucroseor glucose, and with combination of 2% sucrose and various concentrations of mannitol or sorbitol. The maximum number of somatic embryos formed per flask (1,555.70) was obtained in the medium supplemented with 2% sucrose rather than glucose alone or a combination of mannitol or sorbitol and 2% sucrose, and the number of somatic embryos was decreased with the increasing of mannitol or sorbitol concentration. The frequencies of somatic embryos with two cotyledons were 35.14% for sucrose, 19.88% for glucose, 32.55% for mannitol + 2% sucrose, and 38.59% for sorbitol + 2% sucrose, respectively, and the frequencies of abnormal somatic embryos having 3 or more cotyledons were 64.86% for sucrose, 80.12% for glucose, 67.44% for mannitol + 2% sucrose, and 61.41% for sorbitol + 2% sucrose, respectively. Particularly, the frequency of somatic embryos with two cotyledons (59.16%) was the highest in the 2% sucrose medium compared to the frequency of abnormal somatic embryogenesis with three or more cotyledons, and the frequency gradually decreased with increasing concentration of glucose, mannitol or sorbitol. According to these results, it was found that the ratio of abnormal somatic embryo was higher than the normal somatic embryo in carrot, and was shown that somatic embryogenesis and the cotyledon number was affected by the concentrations of sucrose, glucose as carbon source, and mannitol and sorbitol as osmotic agents in culture medium.

Updated Primer on Generative Artificial Intelligence and Large Language Models in Medical Imaging for Medical Professionals

  • Kiduk Kim;Kyungjin Cho;Ryoungwoo Jang;Sunggu Kyung;Soyoung Lee;Sungwon Ham;Edward Choi;Gil-Sun Hong;Namkug Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.3
    • /
    • pp.224-242
    • /
    • 2024
  • The emergence of Chat Generative Pre-trained Transformer (ChatGPT), a chatbot developed by OpenAI, has garnered interest in the application of generative artificial intelligence (AI) models in the medical field. This review summarizes different generative AI models and their potential applications in the field of medicine and explores the evolving landscape of Generative Adversarial Networks and diffusion models since the introduction of generative AI models. These models have made valuable contributions to the field of radiology. Furthermore, this review also explores the significance of synthetic data in addressing privacy concerns and augmenting data diversity and quality within the medical domain, in addition to emphasizing the role of inversion in the investigation of generative models and outlining an approach to replicate this process. We provide an overview of Large Language Models, such as GPTs and bidirectional encoder representations (BERTs), that focus on prominent representatives and discuss recent initiatives involving language-vision models in radiology, including innovative large language and vision assistant for biomedicine (LLaVa-Med), to illustrate their practical application. This comprehensive review offers insights into the wide-ranging applications of generative AI models in clinical research and emphasizes their transformative potential.

Methanol extract of Elsholtzia fruticosa promotes 3T3-L1 preadipocyte differentiation

  • Deumaya Shrestha;Eunbin Kim;Krishna K. Shrestha;Sung-Suk Suh;Sung-Hak Kim;Jong Bae Seo
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.204-218
    • /
    • 2024
  • Elsholtzia fruticosa (EF) is present in tropical regions throughout South Asian countries as well as the Himalayas. Although it has been used as a traditional medicine to treat digestive, respiratory, and inflammatory issues, its effect on preadipocyte differentiation is unknown. In this study, we examined the effects of a methanol extract prepared from EF on the differentiation of 3T3-L1 preadipocytes. Cell differentiation was assessed by microscopic observation and oil-red O staining. The expression of adipogenic and lipogenic genes, including PPARγ and C/EBPα, was measured by western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR), to provide insight into adipogenesis and lipogenesis mechanisms. The results indicated that EF promotes the differentiation of 3T3-L1 preadipocytes, with elevated lipid accumulation occurring in a concentration-dependent manner without apparent cytotoxicity. EF enhances the expression of adipogenic and lipogenic genes, including PPARγ, FABP4, adiponectin, and FAS, at the mRNA and protein levels. The effect of EF was more pronounced during the early and middle stages of 3T3-L1 cell differentiation. Treatment with EF decreased C/EBP homologous protein (CHOP) mRNA and protein levels, while increasing C/EBPα and PPARγ expression. Treatment with EF resulted in the upregulation of cyclin E and CDK2 gene expression within 24 h, followed by a decrease at 48 h, demonstrating the early-stage impact of EF. A concomitant increase in cyclin-D1 levels was observed compared with untreated cells, indicating that EF modulates lipogenic and adipogenic genes through intricate mechanisms involving CHOP and cell cycle pathways. In summary, EF induces the differentiation of 3T3-L1 preadipocytes by increasing the expression of adipogenic and lipogenic genes, possibly through CHOP and cell cycle-dependent mechanisms.

Endoplasmic Reticulum Stress Activates Hepatic Macrophages through PERK-hnRNPA1 Signaling

  • Ari Kwon;Yun Seok Kim;Jiyoon Kim;Ja Hyun Koo
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.341-348
    • /
    • 2024
  • Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.