• Title/Summary/Keyword: Biomedical technology

Search Result 2,698, Processing Time 0.032 seconds

Characteristics of PU/PEG Hybrid Scaffolds Prepared by Electrospinning (전기방사법으로 제조한 PU/PEG 복합 지지체의 특성)

  • Seol, Bokyung;Shin, Ji-Yeon;Oh, Gayeon;Lee, Deuk Yong;Lee, Myung-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.248-255
    • /
    • 2017
  • Polyurethane/polyethylene glycol(PU/PEG) hybrid scaffolds with various concentrations of PEG (0 to 50wt%) were prepared by electrospinning to evaluate the mechanical properties and the biocompatibility of the PU/PEG blend scaffolds. The 12wt% PU/PEG polymers were studied due to the absence of beads. The ultimate tensile strength of 12wt% PU was $8.2{\pm}0.5MPa$. The strength increased to $9.2{\pm}0.7MPa$ when 10% PEG was added to PU. However, the dry and the wet strength of PU/PEG scaffolds began to decrease dramatically when the PEG content was more than 10wt%. No cytotoxicity was observed for all the PU/PEG scaffolds investigated, indicating that the PU/PEG hybrid scaffolds are clinically safe and effective to small-diameter vascular grafts. In addition, the L-929 cells attached and proliferated well on the PU/PEG hybrid scaffolds.

An Energy Self-Sustainable Wireless Sensor System Based on a Microbial Fuel Cell (MFC) and Energy Harvester (EH) (미생물연료전지와 에너지 하베스팅에 기반한 에너지 자립형 무선 센서 시스템)

  • Yeo, Jeongjin;Park, Sojin;Lim, Jonghun;Yang, Yoonseok
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.208-212
    • /
    • 2018
  • Microbial fuel cell (MFC) technology has been attractive since it can not only treat organic waste in an eco-friendly way by digesting it but also generate electricity by the unique metabolic process of microbes. However, it hasn't been employed in practical use until now because it is hard to integrate a small electricity up to an adequate amount of electric power and difficult to keep its bio-electric activity consistent. In this study, we combined an energy harvester with MFC (MFC-EH) to make the power-integration convenient and developed an energy self-sustainable wireless sensor system driven by a stable electric power produced by MFC-EH. Additionally, we build the low power application measuring data to be cast by the web in real-time so that it can be quickly and easily accessed through the internet. The proposed system could contribute to improvement of waste treatment and up-cycling technologies in near future.

Development of Tissue-Tool Interaction Simulation Algorithms for Rotator Cuff Surgery Scenario in Arthroscopic Surgery Training Simulator

  • Jo, Kyungmin;Bae, Eunkyung;You, Hyeonseok;Choi, Jaesoon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.154-164
    • /
    • 2020
  • Various simulator systems for surgery training have been developed and recently become more widely utilized with technology advancement and change in medical education adopting actively simulation-based training. The authors have developed tissue-instrument interaction modeling and graphical simulation algorithms for an arthroscopic surgery training simulator system. In this paper, we propose algorithms for basic surgical techniques, such as cutting, shaving, drilling, grasping, suturing and knot tying for rotator cuff surgery. The proposed method constructs a virtual 3-dimensional model from actual patient data and implements a real-time deformation of the surgical object model through interaction between ten types of arthroscopic surgical tools and a surgical object model. The implementation is based on the Simulation Open Framework Architecture (SOFA, Inria Foundation, France) and custom algorithms were implemented as pulg-in codes. Qualitative review of the developed results by physicians showed both feasibility and limitations of the system for actual use in surgery training.

Real-time urine monitoring system for intensive care patient using optical sensor (광센서를 이용한 실시간 중환자 요량감시 장치)

  • Kim, Jong-Myoung;Lee, Jin-Young;Hong, Joo-Hyun;Lim, Seung-Woon;Cha, Eun-Jong;Lee, Tae-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.81-85
    • /
    • 2008
  • This paper addressed real-time urine monitoring device for intensive care patients. The device was developed to detect and count each urine drop using optical sensor and calculate the current urine output volume and its hourly rate. In experiment, the water volume scale of drainage bottle was observed and compared with the count of the device so that the volume of each drop was found to vary with the dropping rate per minute. From this measurement, the relationship equation was derived to estimate the total water volume from the drop rate (correlation coefficient : r= 0.99). The developed device could be applied to count patient's urine drop successfully. Therefore, this device can be used to monitor intensive care patient's urine status in real-time.

Contributions of the Lower Extremity Joint on the Support Moment in Normal Walking and in Unexpected Step-down Walking

  • Kim Young-Ho;Kim Han Sung;Hwang Sung-Jae;Myeong Seong-Sik;Keum Young-Kwang
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.371-376
    • /
    • 2005
  • Relative contributions of lower extremity joints on the support moment were investigated in this study. Three-dimensional gait analyses were performed in normal walking and in unexpected step-down walking. For both gait studies, inverse dynamics were performed to obtain each joint moment of the lower extremity, which was applied to the forward dynamics simulation to determine the contributions on the support moment at different phases of walking. The forward dynamic simulation results showed that, in normal walking, the ankle plantar flexors contributed significantly during single-limb-support. However, the ankle plantar flexors, knee extensors and hip extensors worked together during double-limb-support. In unexpected step-down walking, the important contributors on the support of the body during single-limb-support were not only ankle plantar flexors but also knee extensors. This study, analyzing the relative contributions of the lower limb joint moments for the body support, would be helpful to understand different unexpected walking conditions and compensatory mechanisms for various pathological gaits.

Preconditioning process for Finger Vein Recognition (지정맥인식을 위한 전처리 과정)

  • KIM, Jung-han;CHO, Kyoung-lae;KIM, Sang-yoon;Kang, Sung-in;Bae, Seong-Ho;LEE, Byoung-do
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.827-829
    • /
    • 2013
  • 생체인식을 통한 개인 인증방법에는 지문인식과, 홍채인식 등이 활발하게 연구가 진행되고 있다. 본 논문에서는 생체인식을 통한 개인 인증 방법 중 우측 검지손가락 정맥을 이용한 방법을 사용하였다. 적외선 LED 8개를 이용하여 적외선을 손가락에 투과하여 CMOS카메라를 통하여 영상을 획득하는 정맥인식장치를 개발하고 영상을 채집한다. ROI영역을 추출하여 손가락 정맥인식을 위한 영상부분만 추출한다. 추출된 영상을 통하여 미디언 필터를 이용하여 noise를 제거하고 히스토그램 평활화를 통한 정맥영역을 부각시킨다. 특히 지역적 히스토그램 평활화를 통해서 보다 정확한 정맥의 영역을 찾는다. 지역적 히스토그램 평활화를 통한 영상을 이진화를 시키고 세선화를 통해서 이후 패터매칭을 통한 개인 인증방법에 대한 전처리 영상을 구한다.

  • PDF

Physiological Status Assessment of Locomotive Engineer During Train Operation

  • Song, Yong-Soo;Baek, Jong-Hyen;Hwang, Do-Sik;Lee, Jeong-Whan;Lee, Young-Jae;Park, Hee-Jung;Choi, Ju-Hyeon;Yang, Heui-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.324-333
    • /
    • 2014
  • In this study, physiological status of locomotive engineers were measured through EEG, ECG, EDA, PPG and respiration signals from 6 subjects to evaluate their arousal status during train operating. Existence of tunnels and mechanical vibration of train using 3-axes acceleration sensors were recorded simultaneously and were correlated with operator's physiological status. As the result of the analyzed subjects' physiological signals, mean SCR was increased in the section where more body movement is required. The RR interval was decreased before and after train stop due to the higher level of mental tension. The intensity of beta wave of EEG was found to be higher before and after train stop and tunnel section due to the increased mental arousal and tension. Therefore, it is expected that the outcomes of the physiological signals explored in this study can be utilized as the quantitative assessment methods for the arousal status to be used for sleepiness prevention system for vehicles operators which can greatly contribute to public transportation system safety.

Improvement of Dynamic Respiration Monitoring Through Sensor Fusion of Accelerometer and Gyro-sensor

  • Yoon, Ja-Woong;Noh, Yeon-Sik;Kwon, Yi-Suk;Kim, Won-Ki;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.334-343
    • /
    • 2014
  • In this paper, we suggest a method to improve the fusion of an accelerometer and gyro sensor by using a Kalman filter to produce a more high-quality respiration signal to supplement the weakness of using a single accelerometer. To evaluate our proposed algorithm's performance, we developed a chest belt-type module. We performed experiments consisting of aerobic exercise and muscular exercises with 10 subjects. We compared the derived respiration signal from the accelerometer with that from our algorithm using the standard respiration signal from the piezoelectric sensor in the time and frequency domains during the aerobic and muscular exercises. We also analyzed the time delay to verify the synchronization between the output and standard signals. We confirmed that our algorithm improved the respiratory rate's detection accuracy by 4.6% and 9.54% for the treadmill and leg press, respectively, which are dynamic. We also confirmed a small time delay of about 0.638 s on average. We determined that real-time monitoring of the respiration signal is possible. In conclusion, our suggested algorithm can acquire a more high-quality respiration signal in a dynamic exercise environment away from a limited static environment to provide safer and more effective exercises and improve exercise sustainability.

A Study on the Driver's Drowsiness Protection System (운전자 졸음방지 시스템 개발에 관한 연구)

  • Kim, B.J.;Park, S.S.;Oh, S.G.;Kim, I.Y.;Kim, N.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.48-51
    • /
    • 1997
  • The purpose of this paper is to propose a method to protect the drowsiness of a driver. We measured the physiological signals, response time, and ace expression of the subjects in normal and drowsy state. Those data are used to establish the drowsiness index and fuzzy system. We employed the computer vision technology to extract and eye, track eyelids and measure the parameters related to drowsiness. These parameters were ed into the fuzzy system to decide the drowsiness level, When the drowsiness was detected, the fuzzy system generated warning signals which cons ist of sound and fragrance. Our system was available in decision of the drowsiness level and improvement of subjects' state.

  • PDF

Accuracy evaluation of diagnostic parameters estimated by uroflowmetry technique measuring hydraulic pressure (수압측정 방식의 요류검사 진단매개변수의 정확도 평가)

  • Kim, Kyung-Ah;Choi, Seong-Su;Kim, Sung-Sik;Kim, Kun-Jin;Park, Kyung-Soon;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.413-418
    • /
    • 2007
  • Uroflowmetry is of great convenience to diagnose benign prostate hypertrophy common in aged men. The urinary flow rate is obtained by weight measurement using load cell, however, sensitive to impact noise. An alternative technique was recently proposed to measure hydraulic pressure instead of weight and demonstrated to introduce significantly reduced noise. In this paper, we described the measured diagnostic parameters between the weight and pressure measuring techniques in 10 normal men. The weight and pressure signals were simultaneously acquired during urination, converted into urine volumes, then differentiated to obtain flow rate signals, which showed very similar waveforms. Diagnostic parameters evaluated by pressure measuring technique were well correlated with the standard weight measuring technique (correlation coefficient > 0.99). Therefore, the new uroflowmetry based on hydraulic pressure measurement can provide accurate diagnostic parameters, which would be clinically valid.