• Title/Summary/Keyword: Biomedical research

Search Result 6,263, Processing Time 0.03 seconds

A Study on the Precedence of the Risk of Problem Features of Senile Dementia Patients (치매노인의 문제특성에 대한 위험순위에 관한 연구)

  • You, Ji-Hye;Lee, Hang-Woon;Eom, Jin-Sup;Park, Soo-Jun;Lee, Bong-Soo;Lee, Jeong-Whan;Tack, Gye-Rae;Chung, Soon-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.10 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • Selected cognitive ability test and survey of basic & problem characteristics were conducted on 110 hospitalized senile dementia patients to extract important problem features. Twenty important problem features were extracted by the factor analysis. In this study, the precedence of the risk of 20 problem features was determined for care of senile dementia patients. Questionnaire was conducted on 32 clinical psychologists who had experienced the diagnosis and treatment of senile dementia patients. Using AHP (Analytic Hierarchy Process), relative risk levels were studied and the precedence of risk was determined by making 20 important problem features in order of the risk. Results of two analyses indicated that during normal daily activities of senile dementia patients the cognitive problem such as memory impairment, judgement disorder and disorientation is the most dangerous risk factor.

  • PDF

A Study on Important Problem Features of Hospitalized Senile Dementia Patients (시설에 있는 치매노인의 주요문제특성에 대한 기초 연구)

  • Kim, Hyun-Jun;Lee, Hang-Woon;You, Ji-Hae;Choi, Mi-Hyun;Eom, Jin-Sup;Lee, Jeong-Whan;Tack, Gye-Rae;Chung, Soon-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.10 no.3
    • /
    • pp.373-381
    • /
    • 2007
  • The purpose of this study was to extract important problem features for care of senile dementia patients. Selected cognitive ability test (Korean Mini-Mental State Examination: K-MMSE) and survey of basic & problem characteristics were conducted on 110 hospitalized senile dementia patients and 30 normal subjects. Problem features of senile dementia patients were extracted using factor analysis. The frequency difference of problem features due to the gender and dementia severities was verified using one-way ANOVA. Twenty problem features were extracted by the factor analysis. According to the gender, there are significant differences in the frequency of problem features in violent language & confabulation, collecting behavior, and repetitive behavior. According to the dementia severities, there are significant differences in the frequency of all problem features except abnormal sexual behavior and audio-visual disorder. The result of this study is expected to be used for the development of the senile dementia patients' life-care monitoring system.

  • PDF

In vitro Expansion of Umbilical Cord Blood Derived Mesenchymal Stem Cells (UCB-MSCs) Under Hypoxic Conditions

  • Yang, Jungyun;Kwon, Jihye;Kim, Miyeon;Bae, Yunkyung;Jin, Hyejin;Park, Hohyun;Eom, Young Woo;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) have the ability to self-renew and differentiate into multi-lineage cells, thus highlighting the feasibility of using umbilical cord blood-derived MSCs (UCB-MSCs) for cell-therapy and tissueengineering. However, the low numbers of UCB-MSC derived from clinical samples requires that an ex vivo expansion step be implemented. As most stem cells reside in low oxygen tension environments (i.e., hypoxia), we cultured the UCBMSCs under 3% $O_2$ or 21% $O_2$ and the following parameters were examined: proliferation, senescence, differentiation and stem cell specific gene expression. UCB-MSCs cultured under hypoxic conditions expanded to significantly higher levels and showed less senescence compared to UCB-MSCs cultured under normoxic conditions. In regards to differentiation potential, UCB-MSCs cultured under hypoxic and normoxic conditions both underwent similar levels of osteogenesis as determined by ALP and von Kossa assay. Furthermore, UCB-MSCs cultured under hypoxic conditions exhibited higher expression of OCT4, NANOG and SOX2 genes. Moreover, cells expanded under hypoxia maintained a stem cell immnunophenotype as determined by flow cytometry. These results demonstrate that the expansion of human UCB-MSCs under a low oxygen tension microenvironment significantly improved cell proliferation and differentiation. These results demonstrate that hypoxic culture can be rapidly and easily implemented into the clinical-scale expansion process in order to maximize UCB-MSCs yield for application in clinical settings and at the same time reduce culture time while maintaining cell product quality.

Recent advances of pectin-based biomedical application: potential of marine pectin

  • Kim, Min-Sung;Chandika, Pathum;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.28-47
    • /
    • 2021
  • Pectin is a natural polysaccharide and biopolymer that serves as a structural component of plant tissues' primary cell walls. Pectin is primarily composed of D-galacturonic acid linked by α-1, 4-glycosidic linkage and is further classified by the ratio of esterified galacturonic acid groups known as degree of esterification (DE). Pectin that contains more than half of its carboxylate units as methyl esters is known as a high methyl (HM) ester. Conversely, pectin that has less than half of its carboxylate units as methyl esters is known as a low methyl (LM) ester. Pectin has various bioactive properties, including anticancer, anti-inflammatory, antioxidant, antidiabetic, anticholesterol, antitumoral, and chemopreventive properties. Moreover, pectin is a useful biopolymer in biomedical applications. Biomedical engineering, which is founded on research aimed to improve the quality of life using new materials and technologies, is typically classified according to the use of hydrogels, nanofiber mats, and nanoparticles. This paper reviews the progress of recent research into pectin-based biomedical applications and the potential future biomedical applications of marine-derived pectin.

Enhanced Undergraduate Software Education Curriculum for Biomedical Engineering: a Proposal for a New Class (개선된 학부 의공학 소프트웨어 교육과정을 위한 새로운 과목의 제안)

  • Park, Hyun-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.4
    • /
    • pp.279-284
    • /
    • 2011
  • Biomedical engineering is a discipline where engineering principles and techniques are applied to the medical field. Biomedical engineering lies between traditional engineering and medicine and is an inter-disciplinary field in its nature. Current Korean undergraduate biomedical engineering curriculum is a simple list of traditional engineering courses combined with basic medical/life science courses. There have been efforts to improve biomedical engineering education to reflect its inter-disciplinary nature. Enhanced software course for biomedical engineering is proposed as a part of effort to overhaul the undergraduate biomedical engineering curriculum. In this newly proposed course, students will learn MATLAB and LabVIEW, which are the most widely used software tools in biomedical engineering.

Application of Calibration Techniques to Enhance Accuracy of Markerless Surgical Robotic System for Intracerebral Hematoma Surgery (뇌혈종 제거 수술을 위한 무마커 수술 유도 로봇 시스템의 정확도 향상을 위한 캘리브레이션 기법)

  • Park, Kyusic;Yoon, Hyon Min;Shin, Sangkyun;Cho, Hyunchul;Kim, Youngjun;Kim, Laehyun;Lee, Deukhee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.246-253
    • /
    • 2015
  • In this paper, we propose calibration methods that can be applied to the markerless surgical robotic system for Intracerebral Hematoma (ICH) Surgery. This surgical robotic system does not require additional process of patient imaging but only uses CT images that are initially taken for a diagnosis purpose. Furthermore, the system applies markerless registration method other than using stereotactic frames. Thus, in overall, our system has many advantages when compared to other conventional ICH surgeries in that they are non-invasive, much less exposed to radiation exposure, and most importantly reduces a total operation time. In the paper, we specifically focus on the application of calibration methods and their verification which is one of the most critical factors that determine the accuracy of the system. We implemented three applications of calibration methods between the coordinates of robot's end-effector and the coordinates of 3D facial surface scanner, based on the hand-eye calibration method. Phantom tests were conducted to validate the feasibility and accuracy of our proposed calibration methods and the surgical robotic system.

Hindsiipropane B alleviates HIV-1 Tat-induced inflammatory responses by suppressing HDAC6-NADPH oxidase-ROS axis in astrocytes

  • Jo, Hyundong;Jang, Ha Young;Youn, Gi Soo;Kim, Donggyu;Lee, Chae Yeon;Jang, Jae Hee;Choi, Soo Young;Jun, Jong-Gab;Park, Jinseu
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.394-399
    • /
    • 2018
  • Human immunodeficiency virus-1 (HIV-1) transactivator of transcription (Tat) is an important viral factor in neuro-inflammation. Hindsiipropane B, present in Celastrus hindsii, possesses various biological mechanisms including anti-inflammatory activity. In this report, we explored the regulatory activity of hindsiipropane B on HIV-1 Tat-mediated chemokine production and its mode of action in astrocytes. Hindsiipropane B significantly alleviated HIV-1 Tat-mediated production of inflammatory chemokines, CCL2, CXCL8, and CXCL10. Hindsiipropane B inhibited expression of HDAC6, which is important regulator in HIV-1 Tat-mediated chemokine production. Hindsiipropane B diminished HIV-1 Tat-mediated reactive oxygen species (ROS) generation and NADPH oxidase activation/expression. Furthermore, hindsiipropane B inhibited HIV-1 Tat-mediated signaling cascades including MAPK, $NF-{\kappa}B$, and AP-1. These data suggest that hindsiipropane B exerts its inhibitory effects on HIV-1 Tat-mediated chemokine production via down-regulating the HDAC6-NADPH oxidaseMAPK-$NF-{\kappa}B$/AP-1 signaling axis, and could serve as a therapeutic lead compound against HIV-1 Tat-associated neuro-inflammation.

Comparison of patient-controlled epidural analgesia with patient-controlled intravenous analgesia for laparoscopic radical prostatectomy

  • Hwang, Boo Young;Kwon, Jae Young;Jeon, So Eun;Kim, Eun Soo;Kim, Hyae Jin;Lee, Hyeon Jeong;An, Jihye
    • The Korean Journal of Pain
    • /
    • v.31 no.3
    • /
    • pp.191-198
    • /
    • 2018
  • Background: Patient-controlled epidural analgesia (PCEA) is known to provide good postoperative analgesia in many types of surgery including laparoscopic surgery. However, no study has compared PCEA with patient-controlled intravascular analgesia (PCIA) in laparoscopic radical prostatectomy (LARP). In this study, the efficacy and side effects of PCEA and PCIA after LARP were compared. Methods: Forty patients undergoing LARP were randomly divided into two groups: 1) a PCEA group, treated with 0.2% ropivacaine 3 ml and 0.1 mg morphine in the bolus; and 2) a PCIA group, treated with oxycodone 1 mg and nefopam 1 mg in the bolus. After the operation, a blinded observer assessed estimated blood loss (EBL), added a dose of rocuronium, performed transfusion, and added analgesics. The numeric rating scale (NRS), infused PCA dose, and side effects were assessed at 1, 6, 24, and 48 h. Results: EBL, added rocuronium, and added analgesics in the PCEA group were less than those in the PCIA group. There were no significant differences in side-effects after the operation between the two groups. Patients were more satisfied with PCEA than with PCIA. The NRS and accumulated PCA count were lower in PCEA group. Conclusions: Combined thoracic epidural anesthesia could induce less blood loss during operations. PCEA showed better postoperative analgesia and greater patient satisfaction than PCIA. Thus, PCEA may be a more useful analgesic method than PICA after LARP.

Region-Based 3D Image Registration Technique for TKR (전슬관절치환술을 위한 3차원 영역기반 영상정합 기술)

  • Key, J.H.;Seo, D.C.;Park, H.S.;Youn, I.C.;Lee, M.K.;Yoo, S.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.392-401
    • /
    • 2006
  • Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.