• Title/Summary/Keyword: Biomedical research

Search Result 6,263, Processing Time 0.029 seconds

Protective effects of PEP-1-Catalase on stress-induced cellular toxicity and MPTP-induced Parkinson's disease

  • Eom, Seon Ae;Kim, Dae Won;Shin, Min Jea;Ahn, Eun Hee;Chung, Seok Young;Sohn, Eun Jeong;Jo, Hyo Sang;Jeon, Su-Jeong;Kim, Duk-Soo;Kwon, Hyeok Yil;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.48 no.7
    • /
    • pp.395-400
    • /
    • 2015
  • Parkinson's disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium (MPP+) induced SH-SY5Y neuronal cell death and in a 1-methyl-4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD animal model. PEP-1-Catalase transduced into SH-SY5Y cells significantly protecting them against MPP+-induced death by decreasing ROS and regulating cellular survival signals including Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis showed that transduced PEP-1-Catalase markedly protected against neuronal cell death in the SN in the PD animal model. Our results indicate that PEP-1-Catalase may have potential as a therapeutic agent for PD and other oxidative stress related diseases. [BMB Reports 2015; 48(7): 395-400]

Cancer Genomics Object Model: An Object Model for Cancer Research Using Microarray

  • Park, Yu-Rang;Lee, Hye-Won;Cho, Sung-Bum;Kim, Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.29-34
    • /
    • 2005
  • DNA microarray becomes a major tool for the investigation of global gene expression in all aspects of cancer and biomedical research. DNA microarray experiment generates enormous amounts of data and they are meaningful only in the context of a detailed description of microarrays, biomaterials, and conditions under which they were generated. MicroArray Gene Expression Data (MGED) society has established microarray standard for structured management of these diverse and large amount data. MGED MAGE-OM (MicroArray Gene Expression Object Model) is an object oriented data model, which attempts to define standard objects for gene expression. To assess the relevance of DNA microarray analysis of cancer research it is required to combine clinical and genomics data. MAGE-OM, however, does not have an appropriate structure to describe clinical information of cancer. For systematic integration of gene expression and clinical data, we create a new model, Cancer Genomics Object Model.

  • PDF

Measurements of Optical Constants of Biomedical Media Based on Time-Resolved Reflectance (시간 분해 반사율 측정에 의한 다중산란 매질의 광학 계수 측정)

  • Jeon, K.J.;Park, S.H.;Kim, U.;Yoon, K.W.;Kim, W.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.235-239
    • /
    • 1996
  • In recent years, the optical properties of multiple-scattering media like tissue have been studied for their potential applications in medicine. In this work the optical properties of multiple scattering media were investigated using the time-resolved reflectance measurement. The reflected light was measured by time-correlated single photon counting system. The transport scattering and absorption coefficient are related to the initial rapid decay and the subsequent decay in reflected light, respectively. Also the optical properties of the samples were measured by conventional method, ie., using continuous wave light. When the distance between the light source and the detector is over 8mm, the optical coefficient can be measured accurately using the suggested method.

  • PDF

Bioinformatics and Genomic Medicine (생명정보학과 유전체의학)

  • Kim, Ju-Han
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.2
    • /
    • pp.83-91
    • /
    • 2002
  • Bioinformatics is a rapidly emerging field of biomedical research. A flood of large-scale genomic and postgenomic data means that many of the challenges in biomedical research are now challenges in computational sciences. Clinical informatics has long developed methodologies to improve biomedical research and clinical care by integrating experimental and clinical information systems. The informatics revolutions both in bioinformatics and clinical informatics will eventually change the current practice of medicine, including diagnostics, therapeutics, and prognostics. Postgenome informatics, powered by high throughput technologies and genomic-scale databases, is likely to transform our biomedical understanding forever much the same way that biochemistry did a generation ago. The paper describes how these technologies will impact biomedical research and clinical care, emphasizing recent advances in biochip-based functional genomics and proteomics. Basic data preprocessing with normalization, primary pattern analysis, and machine learning algorithms will be presented. Use of integrated biochip informatics technologies, text mining of factual and literature databases, and integrated management of biomolecular databases will be discussed. Each step will be given with real examples in the context of clinical relevance. Issues of linking molecular genotype and clinical phenotype information will be discussed.

Differences of Blood Oxygen Saturation between 20s and 60s due to Amount of Highly Concentrated Oxygen Administration (고농도 산소 공급량에 따른 20대와 60대의 혈중 산소 포화도의 차이)

  • Choi, Mi-Hyun;Kim, Ji-Hye;Lee, Su-Jeong;Yang, Jae-Woong;Yi, Jeong-Han;Jun, Jae-Hoon;Kim, Hyun-Jun;Lee, Tae-Soo;Chung, Soon-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The purpose of this study was to examine differences between 20s and 60s in blood oxygen saturation due to 93% oxygen administration of the three levels(1L/min, 3L/min, 5L/min). Ten 20s male($25.0{\pm}1.8$ years), ten 20s female($23.7{\pm}1.9$ years), ten 60s male($68.0{\pm}2.6$ years), and ten 60s female($65.5{\pm}3.1$ years) were selected as the subjects for this study. The oxygen supply equipment(OXUS Co.) provided oxygen by supply rate(i.e., 1L/min, 3L/min, and 5L/min) at a constant rate of 93% oxygen. The experiment consisted of three phases, i.e., Prehyperoxia(5min), Hyperoxia(10min), and Post-hyperoxia(5min). Blood oxygen saturation were measured throughoutthe three phases. By increasing the amount of highly concentrated oxygen administration, blood oxygen saturation was increased. Blood oxygen saturation of 20s was higher than 60s. Blood oxygen saturation was greater during Hyperoxia than during Pre- and Post-hyperoxia. However, rising rate of blood oxygen saturation of 60s by oxygen administration was higher than 20s.

  • PDF

Tat-mediated Protein Transduction of Human Brain Pyridoxine-5-P Oxidase into PC12 Cells

  • Kim, So-Young;An, Jae-Jin;Kim, Dae-Won;Choi, Soo-Hyun;Lee, Sun-Hwa;Hwang, Seok-Il;Kwon, Oh-Shin;Kang, Tae-Cheon;Won, Moo-Ho;Cho, Sung-Woo;Park, Jin-Seu;Eum, Won-Sik;Lee, Kil-Soo;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.1
    • /
    • pp.76-83
    • /
    • 2006
  • Pyridoxine-5-P oxidase catalyses the terminal step in the biosynthesis of pyridoxal-S-P, the biologically active form of vitamin $B_6$ Which acts as an essential cofactor. Here, a human brain pyridoxine-5-P oxidase gene was fused with a gene fragment encoding the HIV-1 Tat protein transduction domain (RKKRRQRRR) in a bacterial expression vector to produce a genetic in-frame Tat-pyridoxine-5-P oxidase fusion protein. Expressed and purified Tat-pyridoxine-5-P oxidase fusion protein transduced efficiently into PC12 cells in a time- and dose-dependent manner when added exogenously to culture media. Once inside the cells, the transduced Tat-pyridoxine-5-P oxidase protein showed catalytic activity and was stable for 48 h. Moreover, the formation of pyridoxal-5-P was increased by adding exogenous Tat-pyridoxine-5-P oxidase to media pre-treated with the vitamin $B_6$ precursor pyridoxine. In addition, the intracellular concentration of pyridoxal-S-P was markedly increased when Tat-pyridoxal kinase was transduced together with Tat-pyridoxine-5-P oxidase into cells. These results suggest that the transduction of Tat-pyridoxine-5-P oxidase fusion protein presents a means of regulating the level of pyridoxal-5-P and of replenishing this enzyme in various neurological disorders related to vitamin $B_6$.

Suppression of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice by transduced Tat-Annexin protein

  • Lee, Sun-Hwa;Kim, Dae-Won;Eom, Seon-Ae;Jun, Se-Young;Park, Mee-Young;Kim, Duk-Soo;Kwon, Hyung-Joo;Kwon, Hyeok-Yil;Han, Kyu-Hyung;Park, Jin-Seu;Hwang, Hyun-Sook;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.354-359
    • /
    • 2012
  • We examined that the protective effects of ANX1 on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in animal models using a Tat-ANX1 protein. Topical application of the Tat-ANX1 protein markedly inhibited TPA-induced ear edema and expression levels of cyclooxygenase-2 (COX-2) as well as pro-inflammatory cytokines such as interleukin-1 beta (IL-$1{\beta}$), IL-6, and tumor necrosis factor-alpha (TNF-${\alpha}$). Also, application of Tat-ANX1 protein significantly inhibited nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) and phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TPA-treated mice ears. The results indicate that Tat-ANX1 protein inhibits the inflammatory response by blocking NF-${\kappa}B$ and MAPK activation in TPA-induced mice ears. Therefore, the Tat-ANX1 protein may be useful as a therapeutic agent against inflammatory skin diseases.

Fenobam promoted the neuroprotective effect of PEP-1-FK506BP following oxidative stress by increasing its transduction efficiency

  • Ahn, Eun Hee;Kim, Dae Won;Shin, Min Jea;Jo, Hyo Sang;Eom, Seon Ae;Kim, Duk-Soo;Park, Eun Young;Park, Jong Hoon;Cho, Sung-Woo;Park, Jinseu;Eum, Won Sik;Son, Ora;Hwang, Hyun Sook;Choi, Soo Young
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.561-566
    • /
    • 2013
  • We examined the ways in which fenobam could promote not only the transduction of PEP-1-FK506BP into cells and tissues but also the neuroprotective effect of PEP-1-FK506BP against ischemic damage. Fenobam strongly enhanced the protective effect of PEP-1-FK506BP against $H_2O_2$-induced toxicity and DNA fragmentation in C6 cells. In addition, combinational treatment of fenobam with PEP-1-FK506BP significantly inhibited the activation of Akt and MAPK induced by $H_2O_2$, compared to treatment with PEP-1-FK506BP alone. Interestingly, our results showed that fenobam significantly increased the transduction of PEP-1-FK506BP into both C6 cells and the hippocampus of gerbil brains. Subsequently, a transient ischemic gerbil model study demonstrated that fenobam pretreatment led to the increased neuroprotection of PEP-1-FK506BP in the CA1 region of the hippocampus. Therefore, these results suggest that fenobam can be a useful agent to enhance the transduction of therapeutic PEP-1-fusion proteins into cells and tissues, thereby promoting their neuroprotective effects.

Human brain pyridoxal-5'-phosphate phosphatase (PLPP): protein transduction of PEP-1-PLPP into PC12 cells

  • Lee, Yeom-Pyo;Kim, Dae-Won;Lee, Min-Jung;Jeong, Min-Seop;Kim, So-Young;Lee, Sun-Hwa;Jang, Sang-Ho;Park, Jin-Seu;Kang, Tae-Cheon;Won, Moo-Ho;Cho, Sung-Woo;Kwon, Oh-Shin;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.41 no.5
    • /
    • pp.408-413
    • /
    • 2008
  • Pyridoxal-5'-phosphate phosphatase (PLPP) catalyzes the dephosphorylation of pyridoxal-5'-phosphate (PLP). A human brain PLPP gene was fused with a PEP-1 peptide and produced a genetic in-frame PEP-1-PLPP fusion protein. The purified PEP-1-PLPP fusion protein was efficiently transduced into PC12 cells in a time- and dose-dependent manner when added exogenously to culture media. Once inside the cells, the transduced PEP-1-PLPP fusion protein was stable for 36 h. The concentration of PLP was markedly decreased by the addition of exogenous PEP-1-PLPP to media pretreated with the vitamin $B_6$ precursors; pyridoxine, pyridoxal kinase and pyridoxine-5'-phosphate oxidase into cells. The results suggest that the transduction of the PEP-1-PLPP fusion protein can be one mode of PLP level regulation, and to replenish this enzyme in the various neurological disorders related to vitamin $B_6$.