• 제목/요약/키워드: Biomedical model

검색결과 1,536건 처리시간 0.023초

Three Dimensional Target Volume Reconstruction from Multiple Projection Images

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.439-441
    • /
    • 2002
  • The aim of this study is to reconstruct the 3D target volume from multiple projection images. It was assumed that we were already aware of the target position exactly, and all processes were performed in Target Coordinates whose origin was the center of the target. We used six projections: two projections were used to make a Reconstruction Box and four projections were for image acquisition. Reconstruction Box was made up of voxels of 3D matrix. Projection images were transformed into 3D volume in this virtual box using geometrical based back-projection method. Algorithm was applied to an ellipsoid model and horse-shoe shaped model. Projection images were created using C program language by geometrical method and reconstruction was also accomplished using C program language and Matlab(The Mathwork Inc., USA). For ellipsoid model, reconstructed volume was slightly overestimated but target shape and position was proved to be correct. For horse-shoe shaped model, reconstructed volume was somewhat different from original target model but there was a considerable improvement in target volume determination.

  • PDF

Energetics of the Heart Model with the Ventricu1ar Assist Device

  • Chung, Chanil-Chung;Lee, Sang-Woo;Han, Dong-Chul;Min, Byoung-Goo
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권1호
    • /
    • pp.43-48
    • /
    • 1996
  • We investigated the energistics of the physiological heart model by comparing predictive indexes of the myocardial oxygen consumption (MOC), such as tension-time index (R), tension-time or force-time inteual (FTI), rate-pressure product (RPP), pressure-work index, and systolic pressure-volume area (PVA) when using the electro-hydraulic left ventricular device (LVAD). We developed the model of LVAD incorporated the closed-loop cardiovascular system with a baroreceptor which can control heart rate and time-varying elastance of left and right ventricles. On considering the benefit of the LVAD, the effects of various operation modes, especially timing of assistance, were evaluated using this coupled computer model. Overall results of the computer simulation shows that our LVAD can unload the ischemic (less contractile) heart by decreasing the MU and increasing coronary flow. Because the pump ejection at the end diastolic phase of the natural heart may increase the afterload of the left ventricle, the control scheme of our LVAD must prohibit ejecting at this time. Since the increment of coronary flow is proportional to the peak aortic pressure after ventricle contraction, the LVAD must eject immediately following the closure of the aortic valve to increase oxygen availability.

  • PDF

생체내 포도당 동태의 등가회로모델 (Equivalent Circuit Model of Glucose Kinetics)

  • Yun, Jang-H.;Kim, Min-Chong
    • 대한의용생체공학회:의공학회지
    • /
    • 제2권1호
    • /
    • pp.31-38
    • /
    • 1981
  • The objective of the present study was to develop an equivalent circuit model of glucose kinetics including the hepatic glucose balance functions which were neglected in the previous compartmental models. Using this circuit model, the insulin resistivity parameter and hepatic glucose sensitivity parameter were estimated in optimal fitting of the model based data of glucose and insulin concentration to the reported clinical intravenous glucose tolerance test(IVGTT) data in normal and diabetic subjects. The addition of the hepatic function in the model has improved the overall performance of the simulation. Also, the computed tissue insulin resistivity and the hepatic glucose sensitivity are shown to be significant in distinguishin four clinical groups of normal and diabetic groups.

  • PDF

심활성도 압반사 제어 모델을 이용한 심혈관시스템 모델링 및 시뮬레이션 (Modeling and Simulation of the Cardiovascular System Using Baroreflex Control Model of the Heart Activity)

  • 최병철;정도운;손정만;예수영;김호종;이현철;김윤진;정동근;이상훈;전계록
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권6호
    • /
    • pp.565-573
    • /
    • 2004
  • 본 연구에서는 심혈관시스템 내의 압력 변화를 감지하는 압수용체 중 가장 대표적인 대동맥 압수용체의 시뮬레이션을 위한 심활성도 압반사 제어모델을 제안하였다. 그리고 제안된 모델은 압반사 조절, 시간지연을 포함한 전기회로 모델들로 구성하였으며, 대동맥동의 압반사 조절시 시간지연이 심주기와 일회 심박출량에 주는 영향을 관찰할 수 있도록 하였다. 심활성도 압수용체 제어 모델에서 시간지연의 기전은 대동맥동 압수용체에서 감지된 압력 정보가 구심성 신경으로 전달되고, 이 정보는 중추신경을 거쳐 원심성 신경으로 전달되어 제어 기능을 수행한다. 제안된 모델의 시뮬레이션 결과 시간지연에 따라 심혈관시스템 변이성의 세가지 패턴을 관찰할 수 있었다. 먼저 시간지연이 2.5초 이상일 경우에는 대동맥압, 일회심박출량, 심박동수가 비주기적으로 발생하고 불규칙인 것을 관찰할 수 있었고, 시간지연이 0.1초에서 2.5초 사이일 경우에는 주기적인 진동이 발생함을 관찰할 수 있었다. 그리고 시간지연이 0.1초 이하인 경우에는 심박동수와 동맥압-심박동수의 궤적은 안정상태를 유지함을 관찰할 수 있었다.

Optical Method to Determine Gait Parameters Using Position Sensitive Detector

  • Jung, Gu-In;Kim, Ji-Sun;Lee, Tae-Hee;Choi, Ju-Hyeon;Oh, Han-Byeol;Kim, A-Hee;Goh, Bong-Jun;Kim, Jun-Sik;Lee, Eun-Suk;Jun, Jae-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2155-2161
    • /
    • 2015
  • This study suggests an optical method to measure cardinal of gait (step width, step length, and stride length) with position sensitive detector (PSD). The effect of reflector’s shape (flat and cylinder) on the PSD output voltage was examined for the application of the suggested system to real situations with a curved shape reflector (e.g. shoes). Various mathematical models were evaluated to find the optimal equation for the distance measurement. Considering the effect of shape on detected signal, the inverse polynomial model was developed. The suggested method is simple to operate, low in cost, small in size, and can evaluate gait parameters in real time. This method is expected to be useful in the field of rehabilitation and sport science

광섬유를 이용한 각도 측정 연구 (A Study on Angle Measurements Using an Optical Fiber)

  • 김아희;김지선;오한별;김준식;고봉준;이은숙;정현철;최주현;백진영;전재훈
    • 전기학회논문지
    • /
    • 제64권4호
    • /
    • pp.605-611
    • /
    • 2015
  • The measurement and analysis of angular change have been studied in many fields. This study developed an angle measurement technique with optical fiber and photodiode. The position and attached angle of photodiode were investigated to find the proper combination of parameter. The results showed that the increased measuring range was achieved when the position of detector was away from the center of rotation. Inverse mathematical model was used to obtain angular changes with an optical fiber. The applications of this study include in optical sensor, joint angle measurement, and sport science.

PTT를 이용한 자전거 운동 중 지속적인 혈압의 예측 (Continuous Blood Pressure Prediction Using PTT During Exercise)

  • 김철승;문기욱;권정훈;엄광문
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권6호
    • /
    • pp.370-375
    • /
    • 2006
  • The purpose of this work is to predict the systolic blood pressure (BP) during exercise from pulse transit time (PTT) for warning of possible danger. PTT was calculated as the time between R-peak of ECG and the peak of differential photoplethysmograph (PPG). For the PTT-BP model, we used regress equations from previous studies and 3 kinds of new models combining linear and nonlinear regress equation. The model parameters were estimated with the data measured under low to middle intensity exercise, and then was tested with the data measured under high intensity exercise. Predicted BP values after high intensity exercise were compared with those measured by cuff-type sphygmomanometer. The results showed that the error between measured and predicted values were acceptable for the monitoring BP. We tested PTT-BP models 1 month after the identification without further calibration. Models could predict the BP and the errors between measured and predicted BP were about 5mmHg. The suggested system is expected to be helpful in recognizing any danger during exercise.

Development of Tissue-Tool Interaction Simulation Algorithms for Rotator Cuff Surgery Scenario in Arthroscopic Surgery Training Simulator

  • Jo, Kyungmin;Bae, Eunkyung;You, Hyeonseok;Choi, Jaesoon
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권4호
    • /
    • pp.154-164
    • /
    • 2020
  • Various simulator systems for surgery training have been developed and recently become more widely utilized with technology advancement and change in medical education adopting actively simulation-based training. The authors have developed tissue-instrument interaction modeling and graphical simulation algorithms for an arthroscopic surgery training simulator system. In this paper, we propose algorithms for basic surgical techniques, such as cutting, shaving, drilling, grasping, suturing and knot tying for rotator cuff surgery. The proposed method constructs a virtual 3-dimensional model from actual patient data and implements a real-time deformation of the surgical object model through interaction between ten types of arthroscopic surgical tools and a surgical object model. The implementation is based on the Simulation Open Framework Architecture (SOFA, Inria Foundation, France) and custom algorithms were implemented as pulg-in codes. Qualitative review of the developed results by physicians showed both feasibility and limitations of the system for actual use in surgery training.