• 제목/요약/키워드: Biomedical Parameter

검색결과 263건 처리시간 0.02초

Preparation of biodegradable microspheres containing water-soluble drug, $\beta$-lactam$ antibiotic

  • Kim, Jin-Hee;Kwon, Ick-Chan;La, Sung-Bum;Jeong, Seo-Young;Young, Taek-Sohn;Seo, Young-Jeong
    • Archives of Pharmacal Research
    • /
    • 제19권1호
    • /
    • pp.30-35
    • /
    • 1996
  • Poly(l-lactic acid)(PLLA) microspheres loaded with ampicillin sodium (AMP-Na_, .betha.-lactam antibiotic, were prepared by a w/o/w multiple emulsion-solvent evaporation method. The amounts of each component in three phases (inner water phase, organic phase, and outer water phase) wre carefully examined in the preparation of PLLA microspheres. The stirring rate, another preparation parameter, was also investigated for study on the effect of mechanical stress on the drug loading and morphology of PLLA microspheres. Most of the preparation parameters had a great influence on the drug loading, surface morphology and size distribution of PLLA microspheres. PLLA microspheres with 15.89 w/w% drug loading were subjected to the in vitro release experimet. The release of ampicillin sodium was constant at a rate of 1.68 $mug/ml/day$ per 1 mg of microspheres for 18 days initial burst effect.

  • PDF

5단계 가압 맥파측정에 의한 연령별 혈관 경화도 분석 (Analysis of Arterial Stiffness by Age Using Pulse Waveform Measurement of 5-levels Graded Pressure)

  • 권선민;강희정;임윤경;이용흠
    • Korean Journal of Acupuncture
    • /
    • 제27권2호
    • /
    • pp.107-120
    • /
    • 2010
  • Objectives : The aim of this study is to measure pulse waveforms by applying 5-level graded pressure, and selecting optimum pulse waveforms. Also to proposing the possibility of using AW(Area of the 1/3 upper height of h1) rate in respect to AT(Total Area) for risk assessment of hypertension or arteriosclerosis is another aim of the study. Methods : Pulse waveforms of normotensive were measured by 5-level graded pressure. The pulse waveforms well reflecting properties of blood vessel(having the largest h1) were selected for optimum pulse waveforms. Various parameters(h-parameter, t-parameter, and others) of optimum pulse waveforms were analyzed. AIx(Augmentation index) was calculated by height-parameters to assess arterial stiffness. The area rate of the 1/3 upper height for h1 in respect to total area was analyzed according to aging. Results : According to aging 1. in height-parameter, h2 and h3 were increased but h5 was decreased. 2. In time-parameter, t2, t3, and t5 were getting short. 3. Area of systolic period was increased, and that of diastolic period decreased. 4. AIx rose by aging. 5. AW was significantly increased despite no changes in AT. Conclusions : By analyzing optimum pulse waveforms of 5-level graded pressure method, we could complement weakness of single graded pressure method. Also, possibility of applying the AW rate to risk assessment of hypertension or arteriosclerosis was confirmed in normotensive population which might not be assessed by AIx.

맥동성분의 적분비를 이용한 펄스 옥시메터의 산소포화도 계산모델 설계 및 분석 (Architecture & Analysis of $SpO_2$ Computing Model Using Integral Ratio of Pulsating Components)

  • 김윤영;김동철;이윤선
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.267-270
    • /
    • 1997
  • Oxygen saturation is an important parameter in clinical fields; fetal monitoring, apnea, emergency medicine etc. Because of monitoring patients continuously, pulse oximeter that measures oxigen saturation non-invasively is regarded attentively. But, though research about accuracy of signal extraction has been developed, it actually plays a supplementary part in hospital for not trusting the principle of measurement by clinicians. In this paper focusing on these things, first we suggested simple mathematical modelling on separating do components, ac components andnoise components in optical signal transmitted from fingertip or earlobe, and then we considered oxygen saturation computing algorithm using integral ratio of pulsating components. Last, we analyzed its effect by comparing received data.

  • PDF

수압 측정에 기반하는 요류검사의 정확도 검증 (Accuracy Validation of Urinary Flowmetry Technique Based on Pressure Measurement)

  • 최성수;이인광;김군진;강승범;박경순;이태수;차은종;김경아
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.198-204
    • /
    • 2008
  • Uroflowmetry is a non-invasive clinical test useful for screening benign prostatic hyperplasia(BPH) common in the aged men. The current standard way to obtain the urinary flow rate is to continuously acquire the urine weight signal proportional to volume over time. The present study proposed an alternative technique measuring pressure to overcome noise problems present in the standard weight measuring technique. Experiments were performed to simultaneously acquire both weight and pressure changes during urination of 9 normal men. Noise components were separated from volume signals converted from both weight and pressure signals based on the polynomial signal model. Signal-to-noise ratio was defined as the ratio of the energies between signal and noise components of the measured volume changes, which was 8.5 times larger in the pressure measuring technique, implying that cleaner signal could be obtained, more immune to noisy environments. When four important diagnostic parameters were estimated, excellent correlation coefficients higher than 0.99 were resulted with mean relative errors less than 5%. Therefore, the present pressure measurement seemed valid as an alternative technique for uroflowmetry.

자동혈구분석기(Technicon $H^*2$ )에 의한 혈액검체의 측정전 Mixing 횟수가 검사결과에 미치는 영향에 관한 평가 (Evaluation of Prior-Mixing Effect Using Technicon $H^*2$)

  • Ein Soon Shin;Yong-Suk Ryang
    • 대한의생명과학회지
    • /
    • 제1권1호
    • /
    • pp.73-79
    • /
    • 1995
  • 자동혈구분석기(Technicon $H^*2$ )에 의한 혈액검체의 측정전 mixing횟수가 검사결과에 미치는 영향을 평가하기 위하여 19가지 parameter를 대상으로 초기측정치에 대한 반복측정치의 변화율을 종속변수로 하여 단순회귀분석을 실시하였다. Mixing횟수가 증가할수록 RBC, Hct, MCV는 통계적으로 유의하게 (p< .01)감소하였고, 호염기구 백분율은 유의하게(p< .05)증가하였으므로 평가된 19가지 parameter의 21%인 4가지 검사항목에서 변화가 있었다.

  • PDF

Simulation of Cardiovascular System for an Optimal Sodium Profiling in Hemodialysis

  • Lim, K.M.;Min, B.G.;Shim, E.B.
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제2권2호
    • /
    • pp.16-26
    • /
    • 2004
  • The object of this study is to develop a mathematical model of the hemodialysis system including the mechanism of solute kinetics, water exchange and also cardiovascular dynamics. The cardiovascular system model used in this study simulates the short-term transient and steady-state hemodynamic responses such as hypotension and disequilibrium syndrome (which are main complications to hemodialysis patients) during hemodialysis. It consists of a 12 lumped-parameter representation of the cardiovascular circulation connected to set-point models of the arterial baroreflexes, a kinetic model (hemodialysis system model) with 3 compartmental body fluids and 2 compartmental solutes. We formulate mathematically this model in terms of an electric analog model. All resistors and most capacitors are assumed to be linear. The control mechanisms are mediated by the information detected from arterial pressoreceptors, and they work on systemic arterial resistance, heart rate, and systemic venous unstressed volume. The hemodialysis model includes the dynamics of urea, creatinine, sodium and potassium in the intracellular and extracellular pools as well as fluid balance equations for the intracellular, interstitial, and plasma volumes. Model parameters are largely based on literature values. We have presented the results on the simulations performed by changing some model parameters with respect to their basal values. In each case, the percentage changes of each compartmental pressure, heart rate (HR), total systemic resistance (TSR), ventricular compliance, zero pressure filling volume and solute concentration profiles are represented during hemodialysis.

  • PDF

자율신경활성도의 지표로서의 동공크기 변이율 -자세변화, 졸음, 인지과제 실험으로부터 (Pupil Size Variability as an Index of Autonomic Activity - from the Experiments of Posture, Sleepiness and Cognitive Task)

  • 이정찬;김지은;박경모
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.55-65
    • /
    • 2007
  • This paper sought to investigate pupil size variability, pupil size parameters in terms of time domain and frequency domain, the autonomic activity change induced by posture change, degree of sleepiness and cognitive task (math task). With a specially designed pupil image acquisition system in the dark room, these three kinds of experiments were performed to induce a dominant state of sympathetic or parasympathetic activation. Electrocardiogram and pupil size were measured in all the experiments. Based on three experiments, we calculated heart rate variability. In the pupil size analysis, we calculated the mean and standard deviation of pupil size (in time domain), and proposed several frequency bands that exhibit different autonomic activation between different sessions. The results indicate that in terms of heart rate variability, posture change exhibited significant differences but not between sleepiness level, or between cognitive task. Pupil sizes differed only during the postures. And we found some frequency bands that correlated with autonomic activation in each experiment. While heart rate variability reflects posture change that need cardiac control, pupil size variability reflects not only posture induced autonomic activation but sleepiness and cognitive load, which is processed in the brain, in time and frequency domain parameter.

졸음운전의 자동 검출 및 각성 시스템 개발에 관한 연구 (A Study on the Development of Automatic Detection and Warning system while Drowsy Driving)

  • 김남균;정경호;김법중
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권3호
    • /
    • pp.315-323
    • /
    • 1997
  • Driving is a complex vigilance task that includes improper lookout, excessive speed and inattention. The primary objective of this research is to detect driver drowsiness so that the driver can be alerted to an impending traffic accident in performance. We developed the automatic detection and warning system during drowsy driving. A drowsiness detection system must be able to monitor driver status and detect the detrimental changes of a driver performance. Eyeblink has been found to be a reliable factor of drowsiness detection in earlier studies. As an additional parameter, we also considered the yawning which often occurs in a low vigilance state and predicts the drowsy state. We used a computer vision method to extract the eyeblink and yawning in the face image sequences. When the drowsy state was detected, the driver was refreshed by alarming device and menthol scent generator after deciding the warning level by fuzzy logic. For the evaluation of our system, we measured the physiological parameters such as EOG and EEG. The results indicated that it is possible to detect and alert the driver drowsiness temporarily or continuously by using our system.

  • PDF

DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework

  • Cheng, Jing;Liu, Yuanyuan;Zhu, Yanjie;Liang, Dong
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.300-312
    • /
    • 2021
  • Compressed sensing (CS) has been investigated in magnetic resonance (MR) parametric mapping to reduce scan time. However, the relatively long reconstruction time restricts its widespread applications in the clinic. Recently, deep learning-based methods have shown great potential in accelerating reconstruction time and improving imaging quality in fast MR imaging, although their adaptation to parametric mapping is still in an early stage. In this paper, we proposed a novel deep learning-based framework DEMO for fast and robust MR parametric mapping. Different from current deep learning-based methods, DEMO trains the network in an unsupervised way, which is more practical given that it is difficult to acquire large fully sampled training data of parametric-weighted images. Specifically, a CS-based loss function is used in DEMO to avoid the necessity of using fully sampled k-space data as the label, thus making it an unsupervised learning approach. DEMO reconstructs parametric weighted images and generates a parametric map simultaneously by unrolling an interaction approach in conventional fast MR parametric mapping, which enables multi-tasking learning. Experimental results showed promising performance of the proposed DEMO framework in quantitative MR T1ρ mapping.

Stability and Robust H Control for Time-Delayed Systems with Parameter Uncertainties and Stochastic Disturbances

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Lee, Sang-Moon;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.200-214
    • /
    • 2016
  • This paper investigates the problem of stability analysis and robust H controller for time-delayed systems with parameter uncertainties and stochastic disturbances. It is assumed parameter uncertainties are norm bounded and mean and variance for disturbances of them are known. Firstly, by constructing a newly augmented Lyapunov-Krasovskii functional, a stability criterion for nominal systems with time-varying delays is derived in terms of linear matrix inequalities (LMIs). Secondly, based on the result of stability analysis, a new controller design method is proposed for the nominal form of the systems. Finally, the proposed method is extended to the problem of robust H controller design for a time-delayed system with parameter uncertainties and stochastic disturbances. To show the validity and effectiveness of the presented criteria, three examples are included.