• 제목/요약/키워드: Biomedical Applications

검색결과 752건 처리시간 0.022초

Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

  • Al Jabbari, Youssef S.
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권2호
    • /
    • pp.138-145
    • /
    • 2014
  • Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties.

Current Research on Conducting Polymer-Carbon Nanocomposites for Bioengineering Applications

  • Lee, Seunghyeon;Lee, Sang Kyu;Jang, Daseul;Shim, Bong Sup
    • Elastomers and Composites
    • /
    • 제52권1호
    • /
    • pp.69-80
    • /
    • 2017
  • Conducting polymers and carbon nanomaterials offer a wide range of applications because of their unique soft conducting properties. Specifically, these conducting polymer-carbon nanocomposites have recently been utilized in bioengineering applications, partly because of their improved biocompatibility compared to conventional conducting materials such as metals and ceramics. Based on the assumption that these composites offer an important application potential as functional materials for biomedical devices or even as biomaterials, this review surveys the recent research trends on conducting polymers-carbon nanocomposites, focusing on bioengineering applications such as polyaniline (PANI), poly(3,4-ethylenedioxythiophene) or PEDOT, polypyrrole (Ppy), and carbon nanotubes and graphene.

Characterization of PVDF/PU fibers prepared by electrospinning

  • Rho, Jeongwon;Lee, Deuk Yong;Lee, Myung-Hyun;Kim, Bae-Yeon;Jeong, Heeseok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2018
  • The 23 wt% polyvinylidene fluoride (PVDF)/15 wt% polyurethane (PU) fibers were electrospun using the conjugated nozzle at a flow rate of 1.0 mL/h and an electric field of 1 kV/cm. The formation of ${\beta}$ crystal phase in the PVDF and the PVDF/PU fibers was confirmed by Fourier transform infrared spectroscopy. After electrospinning, the asspun fibers were immersed in a boiling water and then dried at $100^{\circ}C$ in a convection oven to make a crimp phenomenon. The crimps with a diameter of $2.0{\pm}0.08{\mu}m$ were observed for the PVDF/PU fibers after hydrothermal treatment without sacrificing the extent of ${\beta}$ crystal phase. All the PU, PVDF and PVDF/PU fibers exhibited average cell viability of more than 98 %. The cell proliferation results suggested that L-929 cells adhered well to the PU, PVDF and PVDF/PU fibers and proliferated continuously with increasing time, indicating that the PVDF/PU fibers are highly applicable to the biomedical applications.

Sol-gel Material Optimization for Aptamer Biosensors

  • Ahn, Ji-Young;Cho, Min-Jung;Lee, Se-Ram;Park, Jun-Tae;Hong, Seok-Jin;Shin, Sung-Ho;Jeong, Min-Ku;Lee, Dong-Ki;Kim, So-Youn
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.100-105
    • /
    • 2008
  • Biochips are a powerful emerging technology for biomedical, environmental applications. Especially, making use of bioseonors in the evaluation of toxicity becomes increasingly important. For biosensor as a toxicity detection, biomolecules like antibodies or aptamers have been developed to specifically capture the toxic target molecules. In addition, the development of optimal chip materials capable of maintaining the activity of embedded biomolecules such as proteins or aptamers has proven challenging. Here, using sol-gel materials, new chip material, whose ability for immobilizing the embedded aptamers and maintaining the ability of embedded aptamers is optimal, was searched. We used sol-gel formulation screening methods previously developed and found the best formulation which shows high sensitive and specific interactions of aptamers. This study results will support the technological advancement for diagnosis and environmental sensor.

The fabrication of CdS films and characteristics of x-ray response of CdS films for radiation sensor applications (방사선 센서 적용을 위한 CdS 소자 제조 및 X선 반응 특성)

  • Park, Ji-Koon;Choi, Jang-Yong;Kim, Kyung-Jin;Kim, So-Yung;Lee, Hyung-Won;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 반도체 재료 센서 박막재료 전자세라믹스
    • /
    • pp.72-76
    • /
    • 2004
  • 본 논문은 CdS의 소성 온도가 방사선 검출 특성에 미치는 영향을 조사하였다. CdS 센서는 스크린 프린터 방식을 이용해 $40{\mu}m$의 두께로 제조하였다. XRD 와 SEM을 이용하여 형성된 CdS 필름의 구조 및 형상을 분석하였다. 제조된 CdS 센서에 대해 X선 반응 특성을 조사하기 위해 I-V 측정을 수행하였다. 인가 전압에 따른 Dark current, x-ray sensitivity 및 선량에 따른 Linearity을 측정한 결과 CdS 센서가 $450^{\circ}C$이상 소성시 방사선에 대한 우수한 검출 특성을 보였다.

  • PDF

Implantation of Small Artery Vessel from Blends PCL/PU with and without Anti-thrombus

  • Hiep, Nguyen Thi;Lee, Seong-Jin;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.45.1-45.1
    • /
    • 2010
  • In this experiment, artificial blood vessel was fabricated from electro-spun PU/PCL. To assist with endothelial growth, PU/PCL surface was coated with the RGD peptide. To prevent a clot of blood, anti-thrombus agent was loaded to the fibrous mat and values were reflected through FT-IR data. In vitro study, SEM and MTT data showed that the component was of excellent biocompatibility and cell proliferation. In in vivo study, the artificial blood vessel was implanted in a dog's artery. The results of the CT scan, ultrasound and H&E staining showed that artificial blood vessel was excellent for artery replacement applications.

  • PDF

Functional Polymeric Materials for Biomedical Application (생체의료용 기능성 고분자 재료의 개발)

  • Sung, Yong-Kiel;Song, Dae-Kyung;Sung, Jung-Suk
    • Polymer(Korea)
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2006
  • The development of functional polymeric materials for biomedical application has progressed on the basis of functionality, biocompatibility and biodegradability. In this paper we review the functional polymeric biomaterialsbased systems and propose a range of biomedical applications in the near future. These systems include the functional biodegradable polymers synthesized in our research laboratory, biodegradable polymeric materials, thermosensitive polymeric materials, cationic polymeric materials, non-condensing polymeric biomaterials, bio-polymeric DNA matrix for tissue engineering, and polymeric biomaterials for RNA interference (RNAi) technology.

RGB-LED-based Optical Camera Communication using Multilevel Variable Pulse Position Modulation for Healthcare Applications

  • Rachim, Vega Pradana;An, Jinyoung;Pham, Quan Ngoc;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • 제27권1호
    • /
    • pp.6-12
    • /
    • 2018
  • In this paper, a 32-variable pulse position modulation (32-VPPM) scheme is proposed to support a red-green-blue light-emitting-diode (RGB-LED)-based optical camera communication (OCC) system. Our proposed modulation scheme is designed to enhance the OCC data transmission rate, which is targeted for the wearable biomedical data monitoring system. The OCC technology has been utilized as an alternative solution to the radio frequency (RF) wireless system for long-term self-healthcare monitoring. Different biomedical signals, such as electrocardiograms, photoplethysmograms, and respiration signals are being monitored and transmitted wirelessly from the wearable biomedical device to the smartphone receiver. A common 30 frames per second (fps) smartphone camera with a CMOS image sensor is used to record a transmitted optical signal. Moreover, the overall proposed system architecture, modulation scheme, and data demodulation are discussed in this paper. The experimental result shows that the proposed system is able to achieve > 9 kbps using only a common smartphone camera receiver.

Zinc Sulfide-selenium X-ray Detector for Digital Radiography

  • Park, Ji-Koon;Kang, Sang-Sik;Kim, Jae-Hyung;Mun, Chi-Woong;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권4호
    • /
    • pp.16-20
    • /
    • 2002
  • The high bias voltage associated with the thick layer (typically 500-1000 ㎛) of selenium required to have an acceptable x-ray absorption in radiography and fluoroscopy applications may have some practical inconvenience. A hybrid x-ray detector with zinc sulfide-amorphous selenium structure has been developed to improve the x-ray sensitivity of a a-Se based flat-panel digital imaging detector. Photoluminescence(PL) characteristic of a ZnS:Ag phosphor layer showed a light emission peak centered at about 450 nm, which matches the sensitivity spectrum of selenium. The dark current of the hybrid detector showed similar characteristics with that of a a-Se detector. The x-ray sensitivity of hybrid and a-Se x-ray detector was 345 pC/㎠/mR and 295 pC/㎠/mR at an applied voltage of 10 V/㎛, respectively. The purpose of this study was to evaluate the pertinence of a solution using a thin selenium layer, as a photosensitive converter, with a thick coating of silver doped zinc sulfide phosphor.

Feasibility Study of Determining the Healing Phase of Achilles Tendon Rupture in Rats Using Optical Coherence Tomography

  • Kim, Young-Sik;Chae, Yu-Gyeong;Jeon, Min Yong;Kim, Dong Kyu;Ahn, Yeh-Chan
    • Journal of the Optical Society of Korea
    • /
    • 제19권2호
    • /
    • pp.175-181
    • /
    • 2015
  • Optical coherence tomography (OCT) is a noninvasive technique for microscopic investigation of tissue. We thought that the OCT method could be a potential tool for monitoring the healing process of a tendon. In this study we used two rat models, denervated and non-denervated groups, to observe a variety of healing phases of Achilles tendon (AT) injury. We made samples of AT injury lesions, to take OCT images and to make histopathological samples of serial sectional tissue. In an OCT image the denervated rat showed no specific finding, but the non-denervated rat showed a large defect lesion that was scaffolding tissue. OCT findings combined with pathologic findings showed advantages in visualization of tendon microstructure over other imaging modalities such as MRI and US, and OCT is beneficial to making a treatment plan, especially the timing and intensity of rehabilitation. Therefore a multimodal platform using OCT for evaluation of tendon injury may be potentially useful for many applications.