• 제목/요약/키워드: Biomedical Applications

검색결과 746건 처리시간 0.031초

Polymer Nanofibers for Biomedical Engineering

  • Shin, Min-Kyoon;Kim, Seon-Jeong;Kim, In-Young;Kim, Sun-I.
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.173-178
    • /
    • 2008
  • Recent advancements in the electrospinning method enable the production of ultrafine solid and continuous fibers with diameters ranging from a few nanometers to a few hundred nanometers with controlled surface and morphological features. A wide range of biopolymers can be electrospun into mats with a specific fiber arrangement and structural integrity. These features of nanofiber mats are morphologically similar to the extracellular matrix of natural tissues, which are characterized by a wide pore diameter distribution, a high porosity, effective mechanical properties, and specific biochemical properties. This has resulted in various kinds of applications for polymer nanofibers in the field of biomedicine and biotechnology. The current emphasis of research is on exploiting these properties and focusing on determining the appropriate conditions for electrospinning various biopolymers for biomedical applications, including scaffolds used in tissue engineering, wound dressing, drug delivery, artificial organs, and vascular grafts, and for protective shields in specialty fabrics. This paper reviews the research on biomedical applications of electrospun nanofibers.

Recent advances of pectin-based biomedical application: potential of marine pectin

  • Kim, Min-Sung;Chandika, Pathum;Jung, Won-Kyo
    • 한국해양바이오학회지
    • /
    • 제13권1호
    • /
    • pp.28-47
    • /
    • 2021
  • Pectin is a natural polysaccharide and biopolymer that serves as a structural component of plant tissues' primary cell walls. Pectin is primarily composed of D-galacturonic acid linked by α-1, 4-glycosidic linkage and is further classified by the ratio of esterified galacturonic acid groups known as degree of esterification (DE). Pectin that contains more than half of its carboxylate units as methyl esters is known as a high methyl (HM) ester. Conversely, pectin that has less than half of its carboxylate units as methyl esters is known as a low methyl (LM) ester. Pectin has various bioactive properties, including anticancer, anti-inflammatory, antioxidant, antidiabetic, anticholesterol, antitumoral, and chemopreventive properties. Moreover, pectin is a useful biopolymer in biomedical applications. Biomedical engineering, which is founded on research aimed to improve the quality of life using new materials and technologies, is typically classified according to the use of hydrogels, nanofiber mats, and nanoparticles. This paper reviews the progress of recent research into pectin-based biomedical applications and the potential future biomedical applications of marine-derived pectin.

Two-photon probes for biomedical applications

  • Lim, Chang Su;Cho, Bong Rae
    • BMB Reports
    • /
    • 제46권4호
    • /
    • pp.188-194
    • /
    • 2013
  • Two-photon microscopy (TPM), which uses two photons of lower energy as the excitation source, is a vital tool in biology and clinical science, due to its capacity to image deep inside intact tissues for a long period of time. To make TPM a more versatile tool in biomedical research, we have developed a variety of two-photon probes for specific applications. In this mini review, we will briefly discuss two-photon probes for lipid rafts, lysosomes, mitochondria, and pH, and their biomedical applications.

Biomedical Applications of Silk Protein

  • Kweon, Hae-Yong;Cho, Chong-Su
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제3권1호
    • /
    • pp.1-6
    • /
    • 2001
  • Silk protein has been investigated by many researchers to apply to biomedical field. We reviewed biomedical applications of silk protein such as matrix of wound dressing and drug delivery system. Since silk fibroin/ poly (ethylene glycol) (PEG) semi-interpenetrating polymer networks showed good mechanical properties and wound healing phenomena, it can be used as wound dressing materials. Sericin nanoparticles pre- pared by conjugation with PEG and silk protein/ poloxamer mixture gel are expected to become a deliv- ery as matrix for hydrophobic drug.

  • PDF

근적외선 분광법 및 확산 광 영상법의 최근 연구 동향 (Medical Applications of Near Infrared Spectroscopy and Diffuse Optical Imaging (Review))

  • 이승덕;권기운;고달권;김법민
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.89-98
    • /
    • 2008
  • NIRS (Near-infrared Spectroscopy) and DOI (Diffuse Optical Imaging) are relatively new, non-invasive, and non-ionizing methods that measure or image optical properties (Scattering and Absorption Coefficient) and physiological properties (Water Fraction, concentration of Oxy-, Deoxy-Hemoglobin, Cytochrome Oxidase, etc) of biological tissues. In this paper, three different types of NIRS systems, mathematical modeling, and reconstruction algorithms are described. Also, recent applications such as functional brain imaging, optical mammography, NIRS based BMI (Brain-Machine Interface), and small animal study are reviewed.

Applications of Digital Holography in Biomedical Microscopy

  • Kim, Myung-K.
    • Journal of the Optical Society of Korea
    • /
    • 제14권2호
    • /
    • pp.77-89
    • /
    • 2010
  • Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

Electrochemical Biosensors for Biomedical and Clinical Applications: A Review

  • Rahman Md. Aminur;Park Deog-Su;Shim Yoon-Bo
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권5호
    • /
    • pp.271-282
    • /
    • 2005
  • There are strong demands for accurate, fast, and inexpensive devices in the medical diagnostic laboratories, such as biosensors and chemical sensors. Biosensors can provide the reliable and accurate informations on the desired biochemical parameters, which is an essential prerequisite for a patient before going for a treatment. They can be used for continuous measurements of metabolites, blood cations, gases, etc. Of these, electrochemical biosensors play an important role in the improvement of public health, because rapid detection, high sensitivity, small size, and specificity are achievable for clinical diagnostics. In this paper, the clinical applications with electrochemical biosensors are reviewed. An attempt is also made to highlight some of the trends that govern the research and developments of the important biosensors that are associated to clinical diagnosis.

Design and Performances of Implantable CPW Fed Apollian Shaped Antenna at 2.45 GHz ISM Band for Biomedical Applications

  • Kumar, S. Ashok;Sankar, J. Navin;Dileepan, D.;Shanmuganantham, T.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권5호
    • /
    • pp.250-253
    • /
    • 2015
  • A novel implantable CPW fed Apollian shaped antenna embedded into human tissue is proposed for ISM band biomedical applications. The proposed antenna is made compatible for implantation by embedding it in an alumina ceramic substrate(εr=9.8 and thickness= 0.65 mm). The proposed antenna covers the ISM band of 2.45 GHz. The radiation parameters such as return loss, xy-plane, xz-plane, and yz-plane etc., are measured and analyzed using the agilent vector network analyzer. The proposed antenna has substantial advantages, including low profile, miniaturization ability, lower return loss, better impedance matching, and high gain over conventional implanted antennas.

기능성 Microspheres의 합성 및 생의학적 응용 (Synthesis of Functional Microspheres and Biomedical Applications)

  • 김중현;김우식
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1993년도 춘계학술대회
    • /
    • pp.7-14
    • /
    • 1993
  • Nowadays, microspheres are expected to be applied to biomedical areas and many studies are being performed. For biomedical applications, many kinds of microspheres were synthesized by emulsion polymerization, emulsifier-free emu]sion polymerization, and emulsifier-free emulsion polymerization with ionic surface-active comonomers. Further synthesis techniques about microencapsulation and magnetic microspheres are introduced. Among the practical applications of microspheres, some interesting subjects are introduced. These include solid-phase immunoassays, labeling and identification of lymphocyte populations, extracorporeal and hemoperfusion systems, drug delivery systems, and immunomagnetic cell separation. In addition, basic theories, problems and research trends are also introduced.

  • PDF

생체용 Ti-Zr-Pd계 합금의 양극분극특성 (Anodic Polarization Properties of Ti-Zr-Pd Based Alloys for Biomedical Applications)

  • 정종현
    • 대한치과기공학회지
    • /
    • 제23권1호
    • /
    • pp.21-30
    • /
    • 2001
  • For biomedical applications. Ti-X%Zr-Y%Pd(X: $10{\sim}20$, Y:0.2 or 0.4) based alloys not containing harmful Al and V were newly designed, and polarization curves for their alloys were measured at $37^{\circ}C$ in 5% HCl solution in order to understand effects of Zr on the corrosion. From the results of anodic polarization behavior, it was found that the corrosion resistance increased with increasing Zr content. The results show their potential to develope Ti-based alloys for biomedical materials. The Ti-20%Zr-0.2%Pd alloy shows excellent corrosion resistance and was superior to those of the Ti. Ti-6%Al-4%V ELI alloy, Co-30%Cr-6%Mo alloy and STS 316L stainless steel.

  • PDF