• 제목/요약/키워드: Biomechanical factors

검색결과 133건 처리시간 0.019초

Boundary Elements Heat Transfer Model of Temperature Distribution in Grain Storage Bins

  • T.Abe;C.E.Ofoche;Y.Hikida;Han, D.H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.922-931
    • /
    • 1993
  • Boundary element method was used to solve heat conduction problem for predicting temperature distribution in grain storage bin. Temperature of grain in storage is one of the three main abiotic factors, besides the intergranular gas composition and the grain moisture content, that determine the keeping quality and control measures used to protect grain from insects and damaging microflora. Collecting the temperature data at various points in the storage bins at different time of the day over a period of time is one way of finding the temperature distribution, this method requires a lot of time, cost and labour and less efficient. However data so collected serve useful purpose of being used to validate predicted temperature distribution using mathematical models. Mathematical models based on physical principles can potentially predict with accuracy the temperature distribution in a grain storage bin. Using the boundary element model the effect of bin wall material, ambient emperature, bin size etc. on temperature distribution can be studied. A knowledge of temperature distribution in stored grain not only helps in identifying active deterioration , but also gives an indication of potential for detection.

  • PDF

편마비 환자의 앉은 자세에서 일어서기 동작 시 의자 높이와 발의 조건이 생체역학적 요소에 미치는 영향 (The Effects of Chair Height and Foot Condition on the Biomechanical Factors in Sit-to-Stand Movement of Hemiplegic Patients)

  • 김동훈;김택훈;최흥식;노정석;최규환;김기송
    • 한국전문물리치료학회지
    • /
    • 제25권2호
    • /
    • pp.1-12
    • /
    • 2018
  • Background: It is very difficult for hemiplegic patients to effectively perform the sit-to-stand (STS) movements independently because of several factors. Moreover, the analysis of STS motion in hemiplegic patients has been thus far confined to only muscle strength evaluation with little information available on structural and environmental factors of varying chair height and foot conditions. Objects: This study aimed to analyze the change in biomechanical factors (ground reaction force, center of mass displacement, and the angle and moment of joints) of the joints in the lower extremities with varying chair height and foot conditions in hemiplegic patients while they performed the STS movements. Methods: Nine hemiplegic patients voluntarily participated in this study. Their STS movements was analyzed in a total of nine sessions (one set of three consecutive sessions) with varying chair height and foot conditions. The biomechanical factors of the joints in the lower extremities were measured during the movements. Ground reaction force was measured using a force plate; and the other abovementioned parameters were measured using an infra-red camera. Two-way repeated analysis of variance was performed to determine the changes in biomechanical factors in the lower extremities with varying chair height and foot conditions. Results: No interaction was found between chair height and foot conditions (p>.05). All measured variables with varying chair height showed a significant difference (p<.05). Maximum joint flexion angle, maximum joint moment, and the displacement of the center of mass in foot conditions showed a significant difference (p<.05); however the maximum ground reaction force did not show a significant difference (p>.05). Conclusion: The findings suggest that hemiplegic patients can more stably and efficiently perform the STS movement with increased chair height and while they are bare-foot.

노인 낙상 - 넘어짐 그리고 인체손상의 과학, 넘어지면 다 죽는가?: 문헌 고찰 (Science of Falling and Injury in Older Adults - Do All Falls Lead to Death?: Literature Review)

  • 최우철;임기택;김승수;이세영
    • 한국전문물리치료학회지
    • /
    • 제28권3호
    • /
    • pp.161-167
    • /
    • 2021
  • Understanding sciences behind fall-related hip fractures in older adults is important to develop effective interventions for prevention. The aim of this review is to provide biomechanical understanding and prevention strategies of falls and related hip fractures in older adults, in order to guide future research directions from biomechanical perspectives. While most hip fractures are due to a fall, a few of falls are injurious causing hip fractures, and most falls are non-injurious. Fall mechanics are important in determining injurious versus non-injurious falls. Many different biomechanical factors contribute to the risk of hip fracture, and effects of each individual factors are known well. However, combining effects, and correlation and causation among the factors are poorly understood. While fall prevention interventions include exercise, vision correction, vitamin D intake and environment modification, injury prevention strategies include use of hip protectors, compliant flooring and safe landing strategies, vitamin D intake and exercise. While fall risk assessments have well been established, limited efforts have been made for injury risk assessments. Better understanding is necessary on the correlation and causation among factors affecting the risk of falls and related hip fractures in older adults. Development of the hip fracture risk assessment technique is required to establish more efficient intervention models for fall-related hip fractures in older adults.

남자 해머던지기 시 각 회전 별 역학적 특성과 투사 요인 분석 (Analysis of Projectile Factors and Biomechanical Characteristics of Men's Hammer Throwing during Turning Phases)

  • 김태삼;류지선;이미숙;윤석훈;박재명
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.141-152
    • /
    • 2011
  • The purpose of this study was to investigate the projectile factors and biomechanical characteristics of men's hammer throwing during turning phases. Four national leveled athletes including Korea national record holder participated in this study. After full warm-up, each participant performed 6 trials of hammer throwing with their best. The best recorded trial was selected from each participant and they were analyzed for this study. Three-Dimensional motion analysis using a system of 5 video cameras at a sampling frequency 60Hz was performed for this study. As the number of turns increased, athletes revealed following characteristics. 1) The single and double support time decreased. 2) The rotation foot was closed to axis foot and it revealed greater medio-lateral displacement than that of horizontal one. 3) At the transition point from double support to single support, ball was in front of rotation foot so that not much angular velocity obtained. For the projectile factors, projectile angle did not show differences while projectile height and velocity revealed differences among the participants. It may indicated that each athlete has different fitness and skill level to resist centrifugal force which become larger as the number of turn increased.

골시멘트 특성 및 스템 형상에 따른 시멘트 타입 인공관절의 생체역학적 평가 (Biomechanical Evaluation of Cement type hip Implants as Conditions of bone Cement and Variations of Stem Design)

  • 박흥석;전흥재;윤인찬;이문규;최귀원
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.212-221
    • /
    • 2008
  • The total hip replacement (THR) has been used as the most effective way to restore the function of damaged hip joint. However, various factors have caused some side effects after the THR. Unfortunately, the success of the THR have been decided only by the proficiency of surgeons so far. Hence, It is necessary to find the way to minimize the side effect caused by those factors. The purpose of this study was to suggest the definite data, which can be used to design and choose the optimal hip implant. Using finite element analysis (FEA), the biomechanical condition of bone cement was evaluated. Stress patterns were analyzed in three conditions: cement mantle, procimal femur and stem-cement contact surface. Additionally, micro-motion was analyzed in the stem-cement contact surface. The 3-D femur model was reconstructed from 2-D computerized tomography (CT) images. Raw CT images were preprocessed by image processing technique (i.e. edge detection). In this study, automated edge detection system was created by MATLAB coding for effective and rapid image processing. The 3-D femur model was reconstructed based on anatomical parameters. The stem shape was designed using that parameters. The analysis of the finite element models was performed with the variation of parameters. The biomechanical influence of each parameter was analyzed and derived optimal parameters. Moreover, the results of FE A using commercial stem model (Zimmer's V erSys) were similar to the results of stem model that was used in this study. Through the study, the improved designs and optimal factors for clinical application were suggested. We expect that the results can suggest solutions to minimize various side effects.

Glucosamine Hydrochloride and N-Acetylglucosamine Influence the Response of Bovine Chondrocytes to TGF-β3 and IGF in Monolayer and Three-Dimensional Tissue Culture

  • Pizzolatti, Andre Luiz A.;Gaudig, Florian;Seitz, Daniel;Roesler, Carlos R.M.;Salmoria, Gean Vitor
    • Tissue Engineering and Regenerative Medicine
    • /
    • 제15권6호
    • /
    • pp.781-791
    • /
    • 2018
  • BACKGROUND: Glucosamine hydrochloride (GlcN HCl) has been shown to inhibit cell growth and matrix synthesis, but not with N-acetyl-glucosamine (GlcNAc) supplementation. This effect might be related to an inhibition of critical growth factors (GF), or to a different metabolization of the two glucosamine derivatives. The aim of the present study was to evaluate the synergy between GlcN HCl, GlcNAc, and GF on proliferation and cartilage matrix synthesis. METHOD: Bovine chondrocytes were cultivated in monolayers for 48 h and in three-dimensional (3D) chitosan scaffolds for 30 days in perfusion bioreactors. Serum-free (SF) medium was supplemented with either growth factors (GF) $TGF-{\beta}$ ($5ng\;mL^{-1}$) and IGF-I ($10ng\;mL^{-1}$), GlcN HCl or GlcNAc at 1mM each or both. Six groups were compared according to medium supplementation: (a) SF control; (b) SF + GlcN HCl; (c) SF + GlcNAc; (d) SF + GF; (e) SF + GF + GlcN HCl; and (f) SF + GF + GlcNAc. Cell proliferation, proteoglycan, collagen I (COL1), and collagen II (COL2) synthesis were evaluated. RESULTS: The two glucosamines showed opposite effects in monolayer culture: GlcN HCl significantly reduced proliferation and GlcNAc significantly augmented cellular metabolism. In the 30 days 3D culture, the GlcN HCl added to GF stimulated cell proliferation more than when compared to GF only, but the proteoglycan synthesis was smaller than GF. However, GlcNAc added to GF improved the cell proliferation and proteoglycan synthesis more than when compared to GF and GF/GlcN HCl. The synthesis of COL1 and COL2 was observed in all groups containing GF. CONCLUSION: GlcN HCl and GlcNAc increased cell growth and stimulated COL2 synthesis in long-time 3D culture. However, only GlcNAc added to GF improved proteoglycan synthesis.

발레 Jetė 동작의 도움닫기와 점프구간에서 상해 발생 요인에 대한 생체역학적 분석 (Biomechanical Analysis of Injury Factors in the Run UP and Jump Phases of the Jetѐ)

  • 이진
    • 한국운동역학회지
    • /
    • 제22권3호
    • /
    • pp.295-304
    • /
    • 2012
  • This study, through biomechanical analysis, conducts a risk assessment of injury occurrence in ballet dancers while they perform running and jumping movements. The participants were nine female collegiate students majoring in ballet(age: $20.89{\pm}1.17years$; height: $160.89{\pm}7.01cm$; mass: $48.89{\pm}3.26$). Descriptive data were expressed as $mean{\pm}standard$ deviation(SD) for all variables. An independent t-test was conducted to determine how the following variables differed: duration time, position of the center of gravity, angle of the hip, torque of the hip, and muscle activity. All comparisons were made at the p<0.05 significance level. The results show that the jump time was two times longer than the run time in the duration time. The jump length was also longer than the run. The angle of the hip and the torque at the hip were higher in the right. The vastus medialis muscle was most frequently used. These findings demonstrate that participants' jumps may require more biomechanical variables for performance of better and more correct $jet{\acute{e}}$.

Analysis on Biomechanical Differences Depending on Changes in Postures during Farm Work

  • Lee, Chulgab;Hong, Wanki
    • 대한인간공학회지
    • /
    • 제35권5호
    • /
    • pp.307-317
    • /
    • 2016
  • Objective: This study looks into biomechanical variables occurring when one moves in a sitting posture, and presents objective references to make improvements in work environments of farm workers. Background: The farmers have more common musculoskeletal disorders compared to other professions, because they are much more exposed to biomechanical risk factors. The sitting posture that is the representative form of the squatted, can cause typical knee joint diseases, such as osteoarthritis or patellofemoral pain syndrome of the knee joint. Therefore, a quantitative study of knee load upon the movement in a squatting posture is required. Method: In order to proceed with its investigation, the study examined movements in a sitting posture with and without a lower body supporter through a threedimensional image analysis and by using Surface EMG. The study compared and analyzed the average muscle activity and the maximum muscle activity as well. Results: Every movement in a sitting posture is related to loads onto the knee joints and, when the farm workers move to sides, the study observed a high level of bowlegged moment. The study also noticed differences in muscle activity of medial gastrocnemius with and without the lower body supporter. Conclusion and Application: The study argues that what has been discussed so far is evidence to prove how the farm working environments should be improved in consideration of these movements observed when the farm workers move in a sitting posture.

조도와 주로 변화가 노인 여성 보행 시 낙상 관련 운동역학적 위험요인에 미치는 영향 (Effects of Changes in Illumination Level and Slope on Fall-Related Biomechanical Risk Factors While Walking for Elderly Women)

  • 전현민;박상균
    • 한국운동역학회지
    • /
    • 제25권4호
    • /
    • pp.413-421
    • /
    • 2015
  • Objective : The purpose of this study was to investigate biomechanical changes of the lower limb including dynamic stability with changes in illumination (300Lx, 150Lx, and 5Lx) and slope (level and $15^{\circ}$ downhill) as risk factors for elderly falls. Method : Fifteen elderly females were selected for this study. Seven infrared cameras (Proreflex MCU 240: Qualisys, Sweden) and an instrumented treadmill (Bertec, USA) surrounded by illumination regulators and lights to change the levels of illumination were used to collect the data. A One-Way ANOVA with repeated measures using SPSS 12.0 was used to analyze statistical differences by the changes in illumination and slope. Statistical significance was set at ${\alpha}=.05$. Results : No differences in the joint movement of the lower limbs were found with changes in illumination (p>.05). The maximum plantar flexion movement of the ankle joints appeared to be greater at 5Lx compared to 300Lx during slope gait (p<.05). Additionally, maximum extension movement of the hip joints appeared to be greater at 5Lx and 150Lx compared to 300Lx during slope gait (p<.05). The maximum COM-COP angular velocity (direction to medial side of the body) of dynamic stability appeared to be smaller at 150Lx and 300Lx compared to 5Lx during level gait (p<.05). The minimum COM-COP angular velocity (direction to lateral side to the body) of dynamic stability appeared smaller at 150Lx compared to 5Lx during level gait (p<.05). Conclusion : In conclusion, elderly people use a stabilization strategy that reduces walk speed and dynamic stability as darkness increases. Therefore, the changes in illumination during gait induce the changes in gait mechanics which may increase the levels of biomechanical risk in elderly falls.

하지 수술환자에게 적용한 로봇보조 보행훈련의 단기간 임상적 효과: 예비 연구 (Short-Term Clinical Effects of Robot-Assisted Gait Training Applied to Patients Undergoing Lower Extremity Surgery: A Pilot Study)

  • 이하민;권중원
    • PNF and Movement
    • /
    • 제20권2호
    • /
    • pp.295-306
    • /
    • 2022
  • Purpose: This study aimed to investigate the effect of robot-assisted gait training on the active ranges of motion, gait abilities, and biomechanical characteristics of gait in patients who underwent lower extremity surgery, and to verify the effectiveness and clinical usefulness of robot-assisted gait training. Methods: This study was conducted on 14 subjects who underwent lower extremity surgery. The subjects participated in robot-assisted gait training for 2 weeks. The active ranges of motion of the lower extremities were evaluated, and gait abilities were assessed using 10-m and 2-min walk tests. An STT Systems Inertial Measurement Unit was used to collect data on biomechanical characteristics during gait. Spatiotemporal parameters were used to measure cadence, step length, and velocity, and kinematic parameters were used to measure hip and knee joint movement during gait. Results: Significant improvements in the active ranges of motion of the hip and knee joints (flexion, extension, abduction, and adduction) and in the 10-m and 2-min walk test results were observed after robot-assisted gait training (p < 0.05). In addition, biomechanical characteristics of gait, spatiotemporal factors (cadence, step length, and velocity), and kinematic factors (gait hip flexion-extension, internal rotation-external rotation angle, and knee joint flexion-extension) were also significantly improved (p < 0.05). Conclusion: The results of this study are of clinical importance as they demonstrate that robot-assisted gait training can be used as an effective intervention method for patients who have undergone lower extremity surgery. Furthermore, the findings of this study are clinically meaningful as they expand the scope of robot-assisted gait training, which is currently mainly applied to patients with central nervous system conditions.