• Title/Summary/Keyword: Biomechanical design

Search Result 140, Processing Time 0.033 seconds

Biomechanical Efficacy of a Combined Flexible Cage with Pedicle Screws with Spring rods: A Finite Element Analysis (Spring rod를 사용한 척추경 나사못과 동반 시술된 Flexible cage의 생체역학적 효과)

  • Kim, Y.H.;Park, E.Y.;Kim, W.H.;Hwang, S.P.;Park, K.W.;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Recently, flexible cages have been introduced in an attempt to absorb and reduce the abnormal load transfer along the anterior parts of the spine. They are designed to be used with the pedicle screw systems to allow some mobility at the index level while containing ROM at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the flexible cage when combined with pedicle screws with flexible rods. The post-operated models were constructed by modifying the L4-5 of a previously-validated 3-D FE model of the intact lumbar spine (L2-S1): (1) Type 1, flexible cage only; (2) Type 2, pedicle screws with flexible rods; (3) Type 3, interbody fusion cage plus pedicle screws with rigid rods; (4) Type 4, interbody fusion cage plus Type 2; (5) Type 5, Type 1 plus Type 2. Flexion/extension of 10 Nm with a compressive follower load of 400N was applied. As compared to the Type 3 (62~65%) and Type 4 (59~62%), Type 5 (53~55%) was able to limit the motion at the operated level effectively, despite moderate reduction at the adjacent level. It was also able to shift the load back to the anterior portions of the spine thus relieving excessively high posterior load transfer and to reduce stress on the endplate by absorbing the load with its flexible shape design features. The likelihood of component failure of flexble cage remained less than 30% regardless of loading conditions when combined with pedicle screws with flexible rods. Our study demonstrated that flexible cages when combined with posterior dynamic system may help reduce subsidence of cage and degeneration process at the adjacent levels while effectively providing stability at the operated level.

Biomechanical Analysis of Different Thoracolumbar Orthosis Designs using Finite Element Method (유한요소 해석을 이용한 정형용 흉·요추 보조기의 형태에 따른 생체역학적 분석)

  • Kim, Y.H.;Jun, S.C.;Jung, D.Y.;Lee, S.J.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 2012
  • Thoracolumbar orthosis has been used for the rehabilitation of the patients with senile kyphosis. Recently, a number of different thoracolumbar orthosis designs have been introduced but its biomechanical effectiveness still remain unknown. In this study, we compared the pressure distribution on the surface of the trunk and stresses on the orthosis in relation to changes in connecting frame designs (Type 1, one-connecting frame type; Type 2, two-connecting frame type; Type 3, all-in-one type) using finite element (FE) models under different motions of the trunk. The results showed that Type 3 distributed the pressure on the trunk most evenly followed by Type 2 and Type 1 and the difference between Type 1 and Type 2 was negligible. ROM was limited most effectively by Type 3 ($8.5{\sim}9.4^{\circ}$), followed by Type 2 ($11.3{\sim}13.9^{\circ}$) and Type 1 ($12.1{\sim}15.4^{\circ}$). The ratio between the peak von Mises stress and yield strength of each material remained less than 20% regardless of orthosis type indicating low likelihood of component failure. In conclusion, our study found that all-in-one type of orthosis was the most effective design for the conservative treatment of spinal deformity in terms of function and comfort.

  • PDF

A Biomechanical Comparative Analysis of the Multi-Radius Total Knee Arthroplastry System for Go up Stair and Go down Stair (계단 오르기와 내리기 동안 다축범위(multi-radius) 무릎인공관절 수술자의 운동역학적 비교분석)

  • Jin, Young-Wan;Yoo, Byung-In;Kawk, Yi-Sub
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.31-41
    • /
    • 2006
  • The primary purpose of a TKA is to restore normal knee function Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from climbing stairs; (b) provide adequate knee joint stability. A 16-channel MyoResearch XP EMG system was used to collect the differential input surface electromyography signals VM, VL, RF, BF, ST during climbing/descending stair tests. A Peak Motion Measurement System was used to collect the kinematic and kinetic data. AKIN-COM Ill isokinetic dynamometer was used for EMG of VM, VL, RF, BF and ST during maximal voluntary contraction. I Quadriceps EMG results for the VM of the passed 1year group limb demonstrated significant less RMS EMG than that of the passed 3year group limb $60^{\circ}-15^{\circ}$ of knee flexion(p<0.05). The VL of the passed 1year group limb also demonstrated significants less RMS EMG than that of the passed 3year group limb from $60^{\circ}-45^{\circ}$ of knee flexion(p<0.05). Similar to the VM and VL, the RF of the passed 1year group limb showed less RMS EMG than that of the passed 3year group limb from $60^{\circ}-30^{\circ}$ do knee flexion(p<0.05). Hamstring EMG results for the BF of the passed 1year group limb demonstrated less RMS EMG than that of the passed 3year group limb from $75^{\circ}-15^{\circ}$ of knee flexion(p<0.05). The passed 1year group limb tended to have less ADD displacement(p<0.071) than that of the passed 3year group limb. There was no significant difference of the ABD displacement between the passed 1year group and the passed 3year group limbs(p<0.73). The passed 3year group used compensatory adaptation movement strategies to compensate for the strength deficit of passed 3year group limbs. The passed 3year group limb also increased the quadriceps muscle activation level to produce more knee extension moment to compensate for the short quadriceps moment arm. The passe 3year group limb might have an unstable knee joint in the medio-Iateral direction during the climbing/descending by showing a tendency of more ADD displacement and greater hamming co-activation EMG than the passed 1year group limbs. The TKA design was not able to help the knee joint to produce adequate knee extension moment with less quadriceps muscle effort. I think that old man needs continuous exercise for muscle strength.

Biomechanical considerations for the screw of implant prosthesis: A literature review (임플란트 나사에 적용되는 생역학적 원리: 문헌고찰)

  • Im, So-Min;Kim, Dae-Gon;Park, Chan-Jin;Cha, Min-Sang;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2010
  • Purpose: This article attempted to determine the factors affecting the preload and screw loosening. Methods: Available clinical studies from 1981 to 2008 from the PUBMED that presented screw loosening data and review articles regarding screw joint stability were evaluated. Eleven studies dealing the biomechanical principles of the screw mechanics were reviewed. Moreover, the results of our data were included. Results: The frequency of screw loosening was consequently reduced due to the advancement in torque tightening with torque wrench, screw material, coating technique for reducing the frictional force, and thread design, etc. If preload in the screw falls below a critical level, joint stability may be compromised, and the screw joint may fail clinically. The types of fatigue failure of screw were divided to adhesive wear, plastic deformation, and screw fracture. Conclusion: An optimum preload is essential to the success of the implant-abutment complex. To maintain optimum preload, using a torque wrench and re-tightening at recall time were needed.

Biomechanical Analysis on Dynamic Back Loading Related with Low Back Disorders with Toggle Tasks in Leather Industry Low back (피혁제조 공정 중 토글 작업에서 요통과 관련된 요추 부하의 생체역학적 분석과 개선 방안)

  • Kim, Kyoo Sang;Hong, Chang-Woo;Lee, Dong Kyung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Low back disorders (LBDs) have been the most common musculoskeletal problem in Korean workplaces. It affects many workers, and is associated with high costs to many companies as well as the individual, which can negatively influence even the quality of life of workers. The _evaluation of low back disorder risk associated with manual materials handling tasks can be performed using variety of ergonomic assessment tools such as National Institute for Occupational Safety and Health (NIOSH) Revised Lifting Equation (NLE), the Washington Administrative Code 296-62-0517 (WAC), the Snook Tables etc. But most of these tools provide limited information for choosing the most appropriate assessment method for a particular job and in finding out advantage and disadvantage of the methods, and few have been assessed for their predictive ability. The focus of this study was to _evaluate spinal loads in real time with lifting and pulling heavy cow leathers in variety of postures. Data for estimating mean trunk motions were collected as employees did their work at the job site, using the Lumbar Motion Monitor. Eight employees (2 males, 6 females) were selected in this study, in which the load weight and the vertical start and destination heights of the activity remained constant throughout the task. Variance components (three dimensional spaces) of mean trunk kinematic measures were estimated in a hierarchical design. They were used to compute velocity and acceleration of multiple employees performing the same task and to repetitive movements within a task. Therefore, a results of this study could be used as a quantitative, objective measure to design the workplace so that the risk of occupationally related low back disorder should be minimized.

Musculoskeletal Models to Predict Patient-specific Gait Patterns Using Function-based Morphing Technique (기능기반 형상변형기술을 응용한 환자맞춤형 근골격 모델의 보행패턴 예측에 관한 연구)

  • Park, Byoung-Keon;Koo, Bon-Yeol;Park, Eun-Joo;Chae, Jae-Wook;Lee, Soon-Hyuk;Kim, Jae-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.443-455
    • /
    • 2012
  • The configuration of a musculoskeletal (MS) system is closely related to the individual motions of the human body. Many researches have been focused on evaluating the associations between the MS configuration and the individual motion using patient-specific MS models, but it still remains a challenging issue to accurately predict the motion by differed configurations of the MS system. The main objective of this paper is to predict the changes of a patient-specific gait by altering the geometric parameters of the hip joint using function-based morphing method (FBM). FBM is suitable for motion analysis since this method provide a robust way to morph a MS model while preserving the biomechanical functions of the bones. Computed-muscle control technique is used to calculate the muscle excitations to reproduce the targeted motion within a digital MS model without the motion-captured data. We applied this approach to a patient who has an abnormal gait pattern. Results showed that the femoral neck length and the angle significantly affect to the motion especially for the hip abduction angle during gait, and that this approach is suitable for gait prediction.

Analysis of Motion and Pressure for Circular Friction Massage (전문수기마사지 동작 중 원형강찰법에 대한 동작 및 가압력 분석)

  • Kim, Y.H.;Ryu, J.S.;Son, J.S.;Hwang, S.H.;Sohn, R.H.;Cha, I.H.;Song, J.H.;Song, S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.487-493
    • /
    • 2010
  • In this study, the circular friction massage technique was performed on the trapezius, the levator scapulae, and the deltoid muscles to collect the information on massage pressures and positions, and thus to utilize it in professional massage system design. Massage motion was measured with the 3-D motion capture system and finger pressures were simultaneously obtained with grip sensors. Massage motions, pressure patterns, and pressure times were different on each muscle, and the motion trajectory was similar to the ellipsoidal shape. The trapezius had higher pressure, longer massage time, and larger impulse than other muscles. These results could be useful to design a massage system based on biomechanical analysis. In order to improve massage effect, it is also strongly recommended that the tip of the system be similar with that of a human thumb in shape and material.

A Study on Effects of EGCG and Design Parameter for Drug-Eluting Biodegradable Polymer Stents (약물-용출 생분해성 고분자 스텐트를 위한 EGCG와 디자인 파라미터의 영향에 대한 연구)

  • Jung, T.G.;Lee, J.H.;Lee, J.J.;Hyon, S.H.;Han, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.111-116
    • /
    • 2013
  • Finite element analysis(FEA) has been extensively applied in the analyses of biomechanical properties of stents. Geometrically, a closed-cell stent is an assembly of a number of repeated unit cells and exhibits periodicity in both longitudinal and circumferential directions. This study concentrates on various parameters of the FEA models for the analysis of drug-eluting biodegradable polymeric stents for application to the treatment of coronary artery disease. In order to determine the mechanical characteristics of biodegradable polymeric stents, FEA was used to model two different types of stents: tubular stents(TS) and helicoidal stents(HS). For this modeling, epigallocatechin-3-O-gallate (EGCG)-eluting poly[(L-lactide-co-${\varepsilon}$-caprolactone), PLCL] (E-PLCL) was chosen as drug-eluting stent materials. E-PLCL was prepared by blending PLCL with 5% EGCG as previously described. In addition, the effects of EGCG blending on the mechanical properties of PLCL were investigated for both types of stent models. EGCG did not affect tensile strength at break, but significantly increased elastic modulus of PLCL. It is suggested that FEA is a cost-effective method to improve the design of drug-eluting biodegradable polymeric stents.

3D Modeling of Safety Leg Guards Considering Skin Deformation and shape (피부길이변화를 고려한 3차원 다리보호대 모델링)

  • Lee, Hyojeong;Eom, Ran-i;Lee, Yejin
    • Korean Journal of Human Ecology
    • /
    • v.24 no.4
    • /
    • pp.555-569
    • /
    • 2015
  • During a design process of a protective equipment for sports activities, minimizing movement restrictions is important for enhancing its functions particularly for protection. This study presents a three-dimensional(3D) modeling methodology for designing baseball catcher's leg guards that will allow maximum possible performance, while providing necessary protection. 3D scanning is performed on three positions frequently used by a catcher during the course of a game by putting markings on the subject's legs at 3cm intervals : a standing, a half squat with knees bent to 90 degrees and 120 degrees of knee flexion. Using data obtained from the 3D scan, we analyzed the changes in skin length, radii of curvatures, and cross-sectional shapes, depending on the degree of knee flexion. The results of the analysis were used to decide an on the ideal segmentation of the leg guards by modeling posture. Knee flexions to 90 degrees and to $120^{\circ}$ induced lengthwise extensions than a standing. In particular, the vertical length from the center of the leg increases to a substantially higher degree when compared to those increased from the inner and the outer side of the leg. The degree of extension is varied by positions. Therefore, the leg guards are segmented at points where the rate of increase changed. It resulted in a three-part segmentation of the leg guards at the thigh, the knee, and the shin. Since the 120 degree knee-flexion posture can accommodate other positions as well, the related 3D data are used for modeling Leg Guard (A) with the loft method. At the same time, Leg Guard (B) was modeled with two-part segmentation without separating the knee and the shin as in existing products. A biomechanical analysis of the new design is performed by simulating a 3D dynamic analysis. The analysis revealed that the three-part type (A) leg guards required less energy from the human body than the two-part type (B).

Evaluation of narrow-diameter implant with trapezoid-shape design and microthreads in beagle dogs: A pilot study (성견에서 사다리꼴형 디자인과 미세나사선을 가진 단폭경임플란트의 골유착 평가: 예비연구)

  • Chang, Yun-Young;Yun, Jeong-Ho
    • The Journal of the Korean dental association
    • /
    • v.54 no.7
    • /
    • pp.529-540
    • /
    • 2016
  • Objective: The objective of this study was to evaluate the osseointegration of narrow-diameter implant with trapezoid-shape and to evaluate the effect of coronal microthreads on trapezoid-shape narrow-diameter implant. Materials and Methods: The experimental narrow-diameter implants were classified into two groups according to absence or presence of coronal microthreads: trapezoid-shape narrow diameter implant (TN group) and trapezoid-shape narrow-diameter implant with microthreads (TNM group). They were installed alternately in bilateral mandible in three dogs. After 8 weeks, the animals were sacrificed. Resonance frequency analysis, removal torque test, and histometric analysis were performed. Results: Statistically higher implant stability quotient (ISQ) values were observed in TNM group than in TN group at the time of implant installation. However, significant ISQ values difference was not observed between groups at 8 weeks. Both groups showed significantly increased ISQ values at 8 weeks, compared to the time of implant installation. There was no significant difference between groups in removal torque test. Bone-implant contact ratio also showed no significant difference between groups in total and coronal part. Conclusion: Within the limitation of this study, it could be concluded that the trapezoid-shape design on narrow-diameter implant showed successful ossointegration, and the microthreads on coronal part did not result in significant bone-implant contact and biomechanical stability at 8 weeks.

  • PDF