• 제목/요약/키워드: Biomechanical Method

검색결과 233건 처리시간 0.025초

비대칭 들기 작업의 3차원 시뮬레이션 (Simulation of Whole Body Posture during Asymmetric Lifting)

  • 최경임
    • 대한안전경영과학회지
    • /
    • 제4권2호
    • /
    • pp.11-22
    • /
    • 2002
  • In this study, an asymmetric lifting posture prediction model was developed, which was a three-dimensional model with 12 links and 23 degrees of freedom open kinematic chains. Although previous researchers have proposed biomechanical, psychophysical, or physiological measures as cost functions, for solving redundancy, they lack in accuracy in predicting actual lifting postures and most of them are confined to the two-dimensional model. To develop an asymmetric lifting posture prediction model, we used the resolved motion method for accurately simulating the lifting motion in a reasonable time. Furthermore, in solving the redundant problem of the human posture prediction, a moment weighted Joint Range Availability (JRA) was used as a cost function in order to consider dynamic lifting. However, it is known that the moment weighted JRA as a cost function predicted the lower extremity and L5/S1 joint motions better than the upper extremities, while the constant weighted JRA as a cost function predicted the latter better than the former. To compensate for this, we proposed a hybrid moment weighted JRA as a new cost function with moment weighted for only the lower extremity. In order to validate the proposed cost function, the predicted and real lifting postures for various lifting conditions were compared by using the root mean square(RMS) error. This hybrid JRA reduced RMS more than the previous cost functions. Therefore, it is concluded that the cost function of a hybrid moment weighted JRA can be used to predict three-dimensional lifting postures. To compare with the predicted trajectories and the real lifting movements, graphical validations were performed. The results also showed that the hybrid moment weighted cost function model was found to have generated the postures more similar to the real movements.

상이한 골질과 제원에 따른 짧은 임프란트의 응력 분포: 3차원 유한 요소 분석 (STRESS DISTRIBUTION PATTERN OF THE DIFFERENT DIAMETER AND LENGTH OF SHORT IMPLANTS ACCORDING TO THE BONE QUALITY : 3-D FINITE ELEMENTS ANALYSIS)

  • 김한구;김창현;표성운
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제31권2호
    • /
    • pp.116-126
    • /
    • 2009
  • The use of short implants has been accepted risky from biomechanical point of view. However, short implants appear to be a long term viable solution according to recent clinical reports. The purpose of this study was to investigate the effect of different diameter and length of implant size to the different type of bone on the load distribution pattern. Stress analysis was performed using 3-dimensional finite element analysis(3D-FEA). A three-dimensional linear elastic model was generated. All implants modeled were of the various diameter(${\phi}4.0$, 4.5, 5.0 and 6.0 mm) and varied in length, at 7.0, 8.5 and 10.0 mm. Each implant was modeled with a titanium abutment screw and abutment. The implants were seated in a supporting D2 and D4 bone structure consisting of cortical and cancellous bone. An amount of 100 N occlusal load of vertical and $30^{\circ}$ angle to axis of implant and to buccolingual plane were applied. As a result, the maximum equivalent stress of D2 and D4 bones has been concentrated upper region of cortical bone. As the width of implant is increased, the equivalent stress is decreased in cancellous bone and stress was more homogeneously distributed along the implants in all types of bone. The short implant of diameter 5.0mm, 6.0mm showed effective stress distribution in D2 and D4 bone. The oblique force of 100N generated more concentrated stress on the D2 cortical bone. Within the limitations of this study, the use of short implant may offer a predictable treatment method in the vertically restricted sites.

Investigation of wearing methods of a baby carrier on muscle activation during trunk flexion-extension in healthy women

  • Park, Hae-Kwang;Shin, Hwa-Kyung;Nam, Ki-Seok
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권1호
    • /
    • pp.36-42
    • /
    • 2020
  • Objective: Many caregivers often carry infants using baby carriers until they are approximately 36 months old. The purpose of this study was to compare the muscular activity of the trunk and lower leg muscles during trunk flexion-extension movements in correspondence to various wearing methods of a baby carrier blanket. Design: Cross-sectional study. Methods: Sixteen healthy adult women were to wear baby carrier blankets in five different ways in terms of direction and height, followed by flexion-extension of the trunk. Erector spinae (ES), rectus abdominis, rectus femoris (RF), biceps femoris (BF) muscle activities and triaxial acceleration of trunk were investigated. Results: The front-wearing method of the baby carrier blanket increased the muscular activity of the ES muscle, and wearing the baby carrier blanket at waist height in the same direction was significantly higher than wearing it at pelvic height (p<0.05). As the angle of flexion increased during trunk flexion-extension, the muscle activity of the ES, BF, and the RF increased. There was a greater increase in muscle activity of the ES and the BF during extension compared to flexion (p<0.05). Conclusions: If it is difficult to wear a baby carrier blanket due to lumbar pain, it is recommended to lower the wearing height of the baby carrier to the pelvic level so that the external load can be transferred to the lower extremity. In addition, it appears to be necessary to hold the baby and distribute the load onto the waist through proper body control when performing flexion-extension movements of the trunk. More objective and scientific research that includes various daily tasks and evaluation methods are needed.

골유착성 임프란트와 자연치를 이용한 고정성 국소의치에서 응력분산 및 충격흡수에 관한 유한요소법적 응력분석 (A FINITE ELEMENT STRESS ANALYSIS OF THE STRESS DISTRIBUTION AND THE SHOCK ABSORPTION IN AN OSSEOINTEGRATED IMPLANT-NATURAL TOOTH SUPPORTED FIXED PARTIAL DENTURE)

  • 정창모;이호용
    • 대한치과보철학회지
    • /
    • 제30권4호
    • /
    • pp.582-610
    • /
    • 1992
  • The long-term success of any dental implant is dependent upon the optimization of stresses which occur during oral function and parafunction. Especially, it has been suggested that there is an unique set of problems associated with joining an osseointegrated implant and a natural tooth with a fixed partial denture. For this particular case, although many literatures suggest different ways to avoid high stress concentrations on the bone surrounding the implant under static and dynamic loading conditions, but few studies on the biomechanical efficacy of each assertion have been reported. The purpose of this investigation was to evaluate the efficacies of clinically suggested methods on stress distribution under static load and shock absorption under dynamic load, using two dimensional finite element method. In FEM models of osseointegrated implant-natural tooth supported fixed partial dentures, calculations were made on the stresses in surrounding bone and on the deflections of abutments and superstructure, first, to compare the difference in stress distribution effects under static load by the flexure of fastening screw or prosthesis, or intramobile connector, and second, to compare the difference in the shock absorption effects under dynamic load by intramobile connector or occlusal veneering with composite resin. The results of this analysis suggest that : 1. Under static load condition, using an implant design with fastenign screw connecting implant abutment and prosthesis or increasing the flexibility of fastening screw, or increasing the flexibility of prosthesis led to the .increase in height of peak stresses in cortical bone surrounding the implant, and has little effect on stress change in bone around the natural tooth. 2. Under static load condition, intramobile connector caused the substantial decrease in stress concentration in cortical bone surrounding the implant and the slight increase in stress in bone around the natural tooth. 3. Under dynamic load condition, both intramobile connector and composite resin veneering showed shock absorption effect on bone surrounding the implant and composite resin veneering had a greater shock absorption effect than intramobile connector.

  • PDF

마이크로 프로세서 기반 Lock-In-Amp를 이용한 텍스타일 직물전극의 체온 측정에 관한 연구 (A Study on Body Temperature Measurement of Woven Textile Electrode Using Lock-In-Amp based on Microprocessor)

  • 이강휘;이성수;이정환;송하영
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1141-1148
    • /
    • 2017
  • Generally, a thermistor made by sintering a metal oxide is widely used to measure the ambient temperature. This thermistor is widely used not only for industrial use but also for medical use because of its excellent sensitivity, durability, temperature change characteristics and low cost. In particular, the normal body temperature is 36.9 degrees relative to the armpit temperature, and it is most closely related to the circulating blood flow. Previous studies have shown that body temperature changes during biomechanical changes and body temperature changes by anomalous signs or illnesses. Therefore, in this study, we propose a Lock-In-Amp design to detect minute temperature changes of clothing and thermistor wired by a preacher as a method to regularly measure body temperature in daily life. Especially, it is designed to measure the minute resistance change of the thermistor according to body temperature change even in a low-cost microprocessor environment by using a micro-processor-based Lock-In-Amp, and a jacquard and the thermistor is arranged so as to be close to the side, so that the reference body temperature can be easily measured. The temperature was measured and stored in real time using short-range wireless communication for non - restraint temperature monitoring. A baby vest was made to verify its performance through temperature experiments for infants. The measurement of infant body temperature through the existing skin sensor or thermometer has limitations in monitoring infant body temperature for a long time without restriction. However, it can be overcome by using the embroidery fabric based micro temperature monitoring wireless monitoring device proposed in this study.

관절경적 회전근 개 봉합술: 일열 봉합 수기 (Arthroscopic Rotator Cuff Repair: Single Row Technique)

  • 박형빈
    • Clinics in Shoulder and Elbow
    • /
    • 제10권2호
    • /
    • pp.155-159
    • /
    • 2007
  • 관절경적 일열 봉합법은 잘 정립된 회전근 개 봉합술로 우수한 임상성적을 보여왔다. 하지만, 수술 후 재파열의 빈도가 높은 것으로 알려져 있어 다양한 방법들이 술 후 재파열을 줄이기 위하여 시도되어왔다. 일부 연구들에서는 해부학적 회전근 개 부착부를 재건하면 봉합한 회전근 개의 치유 및 초기 역학적 강도를 증가시킬 수 있을 것이라고 보고하였고, 이열 봉합법이 해부학적 회전근 개 부착부 재건과 봉합부의 강도를 증가 시키고, 간격형성을 감소 시킬 목적으로 소개되었다. 하지만, 재부착된 회전근 개 건의 장력, 봉합된 건의 혈관 형성 등의 생물학적 치유환경이 일렬 봉합법에 비하여 우수함이 아직 입증되지 않았고 수술 후 기능적 개선도 측면에서도 두 봉합술간 차이가 없으므로, 수술 수기가 상대적으로 쉽고, 요구되는 기구 및 내고정물의 추가적 비용이 적어 경제적인 측면에 장점이 있는 일렬 봉합법은 여전히 추천되는 수술수기이다.

Evaluation of Biomechanical Movements and Injury Risk Factors in Weight Lifting (Snatch)

  • Moon, YoungJin
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.369-375
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the possibility of injuries and the types of movement related to damage by body parts, and to prepare for prevention of injuries and development of a training program. Method: For this study, the experiment was conducted according to levels of 60 percentages (ST) and 85 percentages (MA) and 10 subjects from the Korean elite national weightlifting team were included. Furthermore, we analyzed joint moment and muscle activation pattern with three-dimensional video analysis. Ground reaction force and EMG analyses were performed to measure the factors related to injuries and motion. Results: Knee reinjuries such as anterior cruciate ligament damage caused by deterioration of the control ability for the forward movement function of the tibia based on the movement of the biceps femoris when the rectus femoris is activated with the powerful last-pull movement. In particular, athletes with previous or current injuries should perceive a careful contiguity of the ratio of the biceps femoris to the rectus femoris. This shows that athletes can exert five times greater force than the injury threshold in contrast to the inversion moment of the ankle, which is actively performed for a powerful last pull motion and is positively considered in terms of intentional motion. It is activated by excessive adduction and internal rotation moment to avoid excessive abduction and external rotation of the knee at lockout motion. It is an injury risk to muscles and ligaments, causing large adduction moment and internal rotation moment at the knee. Adduction moment in the elbow joint increased to higher than the injury threshold at ST (60% level) in the lockout phase. Hence, all athletes are indicated to be at a high risk of injury of the elbow adductor muscle. Lockout motion is similar to the "high five" posture, and repetitive training in this motion increases the likelihood of injuries because of occurrence of strong internal rotation and adduction of the shoulder. Training volume of lockout motion has to be considered when developing a training program. Conclusion: The important factors related to injury at snatch include B/R rate, muscles to activate the adduction moment and internal rotation moment at the elbow joint in the lockout phase, and muscles to activate the internal rotation moment at the shoulder joint in the lockout phase.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

컴퓨터 그래픽 모델을 이용한 족부 관절의 생체역학적 해석 (Biomechanical Analysis of Human Foot Joints by Using Computer Graphic-Based Model)

  • 서민좌;김시열;조원학;최현창;최현기
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권6호
    • /
    • pp.495-500
    • /
    • 2003
  • 본 연구의 목적은 컴퓨터 그래픽 모델을 사용하여 보행 시 족부 관절의 기구학적 특성을 알아보는 것이었다. 모델에서 모든 관전은 단일중심(monocentric), 1 자유도 힌지 관절로 구성되었다. 보행 시 족부의 모션데이터는 4대의 카메라를 사용한 모션측정기로 얻었으며, 이 모션데이터를 피험자의 밭의 크기에 맞게 스케일링된 모델에 입력하여 시뮬레이션을 수행하였다. 첫 번째 발목발허리관절(tarsometatarsal joint)의 운동 범위(range of motion)는 $-8^{\circ}\;\~\;-13^{\circ}$ 이었으며, 발허리발가락관절(metatarsophanlangeal joint)에서의 운동범위는 $-13^{\circ}\;\~\;-48^{\circ}$ 이었다. 발목발허리관절과 발허리발가락관절에서의 기구학적인 데이터는 이전 연구와 비교했을 때 비슷한 경향을 나타내었다. 따라서 본 연구에서 제시하는 컴퓨터 그래픽을 기반으로 한 족부 모델링은 족부 관절의 생체역학적 해석을 위한 유용한 방법이라 할 수 있을 것이다.

VDT 작업 시 의자 등받이 높이가 생체역학적 변인에 미치는 영향 (Effect of Backrest Height on Biomechanics Variables During VDT (Visual Display Terminal) Work )

  • Jinjoo Yang;Sukhoon Yoon;Sihyun Ryu
    • 한국운동역학회지
    • /
    • 제33권1호
    • /
    • pp.1-9
    • /
    • 2023
  • Objective: This study identifies the difference among the heights of a chair's backrest (High, Mid, No), the biomechanical changes chair users undergo over time, and the variables that can measure musculoskeletal disorders, eventually providing information on the appropriate type of backrest. Method: Eleven healthy subjects in their 20s and 30s who had no experience with musculoskeletal disorders or surgical operations within the last 6 months participated in this study. Computer typing tasks were randomly designated and performed according to the type of chair backrest, and evaluation was performed for Flexion-Relaxation Ratio (FRR) analysis after the computer typing tasks. This study used eight infrared cameras (sampling rate: 100 Hz) and nine-channel electromyography (sampling rate: 1,000 Hz). ANOVA with repeated measures was conducted to verify the results, with the statistical significance level being α = .05. Results: Although there was no significant difference in craniovertebral angle (CVA), this study showed time and interaction effects depending on the height of the backrest (p<.05). When working without the backrest, the head-spine angle was lower compared to the chairs with backrest, based on the computer work. As for the head angle, the higher the back of the chair was, the less the head flexion and the body angle became, whereas the body flexion became less when there was a backrest. In addition, the body flexion increased over time in all types of backrests (p<.05). The muscle activity of the upper body tended to be high in the high backrest chair. On the other hand, a lower muscle activity was found with a low backrest. Conclusion: These results show that a chair is more ergonomic when the body angle is correctly set without bending and when it is supported by a low backrest. Accordingly, this study determines that the backrest affects shoulder and neck musculoskeletal disorders during typing and that medium-height backrest chairs can help prevent musculoskeletal disorders, contrary to the expectation that high-backrest chairs are preferable.