• 제목/요약/키워드: Biomechanical Method

검색결과 229건 처리시간 0.027초

유한요소해석을 이용한 이형성 고관절의 선반형성술에 대한 생체역학 해석 (Biomechanical Analysis of the Shelf Operation for Dysplastic Hip Joint by Finite Element Analysis)

  • 박원만;김윤혁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.519-520
    • /
    • 2006
  • The aim of this study was biomechanical analysis of shelf operation in patients with dysplastic hip joint by finite element contact analysis. Two dimensional CT images were used to construct the finite element models to analyze the contact pressure, and the 3D expansion of the Ninomiya's method was used in the calculation of the resultant force in the hip joint. The surgery recovered the center-edge angles to the normal anatomical range and increased the contact areas in two patients. The maximum contact pressures and von-mises stresses were decreased. The present study provides the biomechanical guideline of optimal surgical parameters to maximize the surgical efficiency and the clinical outcomes in dysplastic hip joint using the shelf operation.

  • PDF

Comparison of Biomechanical Stress on Low Back(L5/S1) for One-hand and Two-hands Lowering Activity

  • Kim, Hong-Ki
    • 대한인간공학회지
    • /
    • 제32권5호
    • /
    • pp.413-420
    • /
    • 2013
  • Objective: The objective of this study was to compare one-hand and two-hands lowering activity in terms of biomechanical stress for the range of lowering heights from knuckle height to 10cm above floor level. Background: Even though two-hands lifting/lowering activity of manual materials handling tasks are prevalent at the industrial site, many manual materials handling tasks which require the worker to perform one-hand lifting/lowering are also very common at the industrial site and forestry and farming. Method: Eight male subjects were asked to perform lowering tasks using both a one-handed as well as a two-handed lowering technique. Trunk muscle electromyographic activity was recorded while the subjects performed the lowering tasks. This information was used as input to an EMG-assisted free-dynamic biomechanical model that predicted spinal loading in three dimensions. Results: It was shown that for the left-hand lowering tasks, the values of moment, lateral shear force, A-P shear force, and compressive force were increased by the average 6%, as the workload was increased twice from 7.5kg to 15kg. For the right-hand lowering task, these were increased by the average 17%. For the two-hands lowering tasks, these were increased by the average 14%. Conclusion: Even though the effect of workload on the biomechanical stress for both one-hand and two-hands lowering tasks is not so significant for the workload less than 15kg, it can be claimed that the biomechanical stress for one-hand lowering is greater than for two-hands lowering tasks. Therefore, it can be concluded that asymmetrical lowering posture would give greater influence on the biomechanical stress than the workload effect for one-hand lowering activity. Application: The result of this study may be used to provide guidelines of recommended safe weights for tasks involved in one-hand lowering activity.

편마비환자의 중력선 이동에 따른 역학적 분석 (Biomechanical Analysis on the Shift of Gravity Line in Hemiplegic Patients)

  • 이혜영;정동훈;박래준;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제11권1호
    • /
    • pp.63-70
    • /
    • 1999
  • This study was for mathematical method of calculating the joint reaction force during on single - leg stance on a normal and hemiplegic patients. It is important to compare the distance of the line of gravity from the hip joint on hemiplegic patients with this on normal in this study. In earlier studies, there is no include the concept about biomechanical analysis on the shin of line of gravity of hemiplegic patients. Though this concept, we found the compensation make the line of gravity closer to the supporting hip joint and the trunk was toward the side of paralysis. The result of the Joint reaction force on hemiplegic patients is found to be approximately $31.33\%$ in the unaffected side by biomechanical analysis.

  • PDF

유한요소 모델 변수의 역 추정법을 이용한 생체의 물성 규명 (Biomechanical Characterization with Inverse FE Model Parameter Estimation: Macro and Micro Applications)

  • 안범모;김영진;신현정;김정
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1202-1208
    • /
    • 2009
  • An inverse finite element (FE) model parameter estimation algorithm can be used to characterize mechanical properties of biological tissues. Using this algorithm, we can consider the influence of material nonlinearity, contact mechanics, complex boundary conditions, and geometrical constraints in the modeling. In this study, biomechanical experiments on macro and micro samples are conducted and characterized with the developed algorithm. Macro scale experiments were performed to measure the force response of porcine livers against mechanical loadings using one-dimensional indentation device. The force response of the human liver cancer cells was also measured by the atomic force microscope (AFM). The mechanical behavior of porcine livers (macro) and human liver cancer cells (micro) were characterized with the algorithm via hyperelastic and linear viscoelastic models. The developed models are suitable for computing accurate reaction force on tools and deformation of biomechanical tissues.

Efficacy of Forward Head Posture on Scapular Kinematic Changes and Shoulder Pain

  • Eunsang Lee
    • Physical Therapy Rehabilitation Science
    • /
    • 제11권4호
    • /
    • pp.436-445
    • /
    • 2022
  • Objective: Deformation of soft tissues around the neck and scapularcan caused by forward head posture(FHP), which has an uncomfortable effect on biomechanical changes in the scapula as well as functional disorders of the shoulder. However, studies related to direct FHP, biomechanical changes in the scapulafunction, and shoulder pain and disorder have not yet been conducted. Therefore, purpose of this study is to effect of decresedthe FHP on the shoulder function of the sacpular biomechanical examine the change in the shoulder painand disorder. Design: A randomized controlled trial Methods: The participants were 32adults(23.03±3.90 years) recruited and redivided randomly into Forward head posture corrective exercise(FHPCE) vs Control. The FHPCE group was proceeded according to the over load principle through 2steps biofeedback exercise and corrective exercise(n=16). The control (n=16) was TENS did not operated and padding 20 minute. This study was conducted 3 times a week for 4a weeks. Results: FHPCE group is improve in the results of craneocervical angle(p<0.05, 95% CI: 0.352, 4.073). In Mechanical changes of scapula in the shoulder flexion more significant improvement in FHPCE than control group[Axis X(p<0.05), Y(p<0.01), Z(p<0.01)], and shoulder abductionmore significant improvement in FHPCE than control group[xis X(p<0.01)], as well FHPCE showed significant increased in the results in the shoulder pain(p<0.05, 95% CI: -13.244, -1.566) Conclusions: This study suggected that FHP affects the biomechanical changes of the shoulder, and a new method for shoulder pain intervention

길이 정보를 이용한 생체 잡음 제거 기술에 관한 연구 (A Study on Biomechanical Noise Reduction Technique Using Length Information)

  • 강신길;윤용산;박재희
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1643-1649
    • /
    • 2000
  • When markers attached to body segment are captured by camera, they generally have many noises due to intrinsic biomechanical characteristics. In this study, one technique to reduce these noises is suggested, which constructs a local coordinates of the markers using time-mean lengths of the measured markers and calculates a linear transformation matrix of the interesting body using least square error technique. This matrix is decomposed into two matrices of rotation and flexibility. Suggested method does well for 3 markers or more, and shows consistent results without regard to choice of reference axis.

신발 설계 및 평가를 위한 컴퓨터 모델 (REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION)

  • Cheung, Jason Tak-Man;Yu, Jia;Zhang, Ming
    • 한국운동역학회지
    • /
    • 제19권1호
    • /
    • pp.13-25
    • /
    • 2009
  • Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.

Biomechanical Evaluation of the Neck and Shoulder When Using Pillows with Various Inner Materials

  • Kim, Jung-Yong;Park, Ji-Soo;Park, Dae-Eun
    • 대한인간공학회지
    • /
    • 제30권2호
    • /
    • pp.339-347
    • /
    • 2011
  • Objective: The purpose of this study was to evaluate of various material of pillows by using biomechanical variables such as the cervical stability, head pressure distribution, and muscle activity. Method: Eight subjects participated in the experiment. Three different materials such as polyester sponge, memory foam and the buckwheat shell used for Korean traditional pillow were tested. Electro-goniometer, six channels of electromyography(EMG), ten channels of the head pressure sensors were used to measure the biomechanical responses. Surface electrodes were attached to the right/left semispinals capitis(RSC, LSC), the right/left sternocleidomastoid(RSM, LSM), the right/left upper trapezius(RUT, LUT). The cervical stability was evaluated by the angle deviated from the standing neck position. The head pressure distribution was evaluated by the pressure per unit area recorded on the sensors and the intensity of peak pressure. Electromyography(EMG) data were analyzed by using root mean square(RMS) and mean power frequency(MPF). Results: The buckwheat shell material showed a higher stability in the cervical spine then the other pillows during spine position. In terms of head pressure distribution, the memory form indicated the lowest pressure at supine position, buckwheat shell material indicated the lowest pressure during lying down to side, and polyester cushion recorded the highest pressure at all postures. Conclusion: The buckwheat shell material has a biomechanical advantage to maintain a healthy neck angle and reduce the pressure on the head, which means the buckwheat shell is a potential material for ergonomic pillow design. The pillow with memory form showed second best biomechanical performance in this study. Application: The shape of the buckwheat shell pillow and the characteristics of materials can be used to design the pillow preventing neck pain and cervical disk problems.

유한요소법을 이용한 척추 삽입형 경추판 시스템에 대한 생체역학적 피로해석 (Biomechanical Fatigue Analysis of Cervical Plate Systems by using a Computer Simulation Based on Finite Element Method)

  • 김성민;양인철;조성윤
    • 한국정밀공학회지
    • /
    • 제25권8호
    • /
    • pp.96-103
    • /
    • 2008
  • In this study, we performed the biomechanical analysis of cervical plate systems by using a computer simulation based on finite element method to derive reliable model by analysis of design variables and fatigue behavior. To simulate the cervical spine movement in-vivo state by surgery, we modeled the cervical plate system which consisted of screws, rings, rivets, and plate and Ultra High Molecular Weight Polyethylene (UHMWPE) Block. The experiment of cervical plate system followed the ASTM F1717 standards that covered the materials and methods for the static and fatigue testing. The result of computer simulation is compared with experimented test. We expected this study is to derive reliable results by analysis of design variables and fatigue behavior for developing a new model.

Voxel mesh 기법을 이용한 하악골의 유한요소모델링 (Finite element modeling of the mandible using voxel mesh method)

  • 이은택;오택열;변창환;이병권;유용석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.600-604
    • /
    • 1997
  • Knowledge of the complex biomechanical behavior of the human mandible is of great importance in various clinical situations. Various approaches can be used to evaluate the physical behavior of bone. In this study, we developed the voxel mesh program(Bionix) and generated FE models of mandible using Bionix and using handmade work and compared them with free vibration results derived from finite element analysis(FEA). The data of FE models based on DICOM File exported from Computed tomography(CT). Comparing the two models, we found a good correlation about mode type and natural frequency. The voxel based finite element mesh is a valid and accurate method to predict parameters of the complex biomechanical behavior of human mandibles.

  • PDF