• Title/Summary/Keyword: Biomechanical Method

Search Result 233, Processing Time 0.022 seconds

Biomechanical analysis of human foot using the computer graphic-based model during walking (컴퓨터 그래픽 모델을 통한 보행 시 발의 생체역학적 해석)

  • 최현기;김시열;이범현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1088-1092
    • /
    • 2002
  • The purpose of this investigation was to study the kinematics of joints between foot segments based on computer graphic-based model during the stance phase of walking. In the model, ail joints were assumed to act as monocentric, single degree of freedom hinge joints. The motion of foot was captured by a video collection system using four cameras. The model fitted in an individual subject was simulated with this motion data. The kinematic data of tarsometatarsal joints and metatarso-phalangeal joint were quantitatively similar to the previous data. Therefore, our method using the computer graphic-based model is considered useful.

  • PDF

Optimum Design of A-Pillar Trim for Occupant Protection (승원 안전을 고려한 승용차 A-Pillar Trim의 최적 설계)

  • 김형곤;강신일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • NHTSA has been conducting biomechanical studies to reduce inujuries sustained sustained during automotive collision. Furthermore, NHTSA added the regulation to the FMVSS 201, limiting the equivalent HIC(Head Injury Criterion) value under 1000. In the presont work, a methodology was developed for the optimum design of the A-pillar trim with rib-structures. The design variables for the rib-strucrures were the transverse spacing, the longitudinal spacing, and the thickness. The required sets of the design varibles were decided based on the design of experiments. The head impact simulations were carried out using the LS-DYNA3D, and the HIC(d) values were computed using the resulrs of the head impact simulation. The objective function was constructed using the response surface methed (RSM). When the obtained optimum values were not inside the region of interest, the design proceduers were repeated by changing the region of interest. Finally, an A-pillar trim with rib-structures, which resulred in HIC(d) value under 850 for 15 mph head-trim impact, was developed.

  • PDF

The Comparison about a Evaluation and Treatment Concept of the Manual Therapy Techniques (도수치료기법들 간의 평가와 치료 개념에 대한 비교)

  • Kim, Ho-Bong;Kim, Suhn-Yeop;Kim, Yong-Min
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2005
  • This study largely compared the general concept, examination, and treatment of various manual therapy techniques. These various manual therapy techniques, however, are still in the developing stage, so no one approach is yet perfect. Clinically, manual therapy techniques are widely being used to treat the dysfunctional neuromusculoskeletal with the common practice of mobilization, manipulation, exercise, and patient education. Anyone of the above approaches must not be selectively chosen as the best method. Manual therapists should treat patients in the clinic with the full knowledge of these proper manual therapy techniques depending on the patient's symptoms in each of the anatomical, biomechanical, and pathological views.

  • PDF

비선형 최적화기법을 이용한 하지근력 예측 인체역학 모형

  • 황규성;정의승;이동춘
    • Proceedings of the ESK Conference
    • /
    • 1994.04a
    • /
    • pp.124-135
    • /
    • 1994
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. It is found that nonlinear optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles reasonably, so the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles in the model, assuming that the muscle forces are distributed proportionally based on their physiological cross sectional area and moment arm. The model incorporated four rigid body segments with the nine muscles to represent lower extreimity. For the model valida- tion, three male subjects performed the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. The developed model can be used to design and to assess the pedals and foot-related equipments design.

  • PDF

Development of a Upper Body Micropostural Classification Scheme Based on Perceived Joint Discomfort (인체 관절 동작의 지각 불편도에 근거한 상체의 자세 분류 체계의 개발)

  • Kee, Do-Hyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.447-455
    • /
    • 1998
  • It is important to identify and evaluate poor working postures properly to prevent work-related musculoskeletal disorders. The purpose of this study is to develope a new upper body micropostural classification scheme for analyzing postural stress in industry. Most of the existing postural classification schemes were based either on the literature, or on simple biomechanical principles, or on a subjective ranking system. The scheme suggested in this study was based on perceived joint discomfort measured through experiment, in which nineteen subjects participated and the magnitude estimation method was employed to obtain subjects' joint discomfort. Also, the criteria for evaluating postural stress of working postures were presented for practitioners of health and safety to be able to redesign working methods and workplaces, which was based on maximum holding time by Miedema and other people. It is expected that the scheme developed in this study could be used as a valuable tool when evaluating working postures.

  • PDF

Biomechanical Analysis of Soccer Shoes According to the Difference of Stud (스터드 차이에 따른 축구화의 운동역학적 변인 비교)

  • Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.4
    • /
    • pp.455-461
    • /
    • 2014
  • The purposes of this study were to reveal the kinematic and kinetic difference of hard ground soccer shoe, firm ground soccer shoe and soft ground soccer shoe. Soccer players were shoes of varying stud designs with some preferring the bladed studs while others opting for the conventional studded stud. Statistics were used one way-ANOVA and Tukey's Honestly Significant Difference Method. Seven healthy college soccer players were attended a test. All parameters were recorded using the Zebris system. Spatio-temporal variables were no significant difference. Lateral symmetry was statistically significant differences (p<.05). Vertical GRF parameters were no significant difference. Medial midfoot pressure, lateral midfoot pressure and central forefoot pressure were statistically significant differences (p<.05). This study demonstrates that playing surface significantly affects difference soccer shoes during soccer game. Furthermore, epidemiological investigation is warranted to determine the effects of playing surfaces on sport specific injury mechanisms.

A Study on The Assessment Method of Gait Analysis for Ankle Assembly Using Ground Reaction Force (지면반발력을 이용한 인공족관절의 보행평가 기법에 관한 연구)

  • Kim Sung Min;Kim Sung Jae;Bae Ha Suk;Choi Byoung Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.197-204
    • /
    • 2005
  • In this study, ground reaction force(GRF), absolute symmetry index(ASI) and coefficient of variation(CV) of fixed, single-axis and multi-axis prosthetic ankle assemblies were investigated to show the biomechanical evaluation for above knee amputees. In the experiments, 37 normal male volunteers, two male and two female AK amputees were tested with fixed, single-axis and multi-axis prosthetic ankle assembly. A gait analysis was carried out to derive the ratio of GRF to weight as the percentage of total stance phase for ten points. The results showed that fixed-axis ankle was superior to the other two ankle assemblies for the characteristic of forwarding and breaking forces. Multi-axis ankle was relatively superior to the other two ankle assemblies for gait balancing and movement of the center for mass. single-axis ankle was relatively superior to the other two ankle assemblies for CV and ASI of GRF.

Evolution of Human Locomotion: A Computer Simulation Study (인류 보행의 진화: 컴퓨터 시뮬레이션 연구)

  • 엄광문;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

Looking beyond Piriformis Syndrome: Is It Really the Piriformis?

  • Shivam Sharma;Harmanpreet Kaur;Nishank Verma;Bibek Adhya
    • Hip & pelvis
    • /
    • v.35 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • Piriformis syndrome is a common differential diagnosis related to sciatica. The following review provides a concise synopsis of the diagnosis, management, history, and alternatives to diagnosis of piriformis syndrome. A search of the literature for research articles related to piriformis syndrome and associated differential diagnosis of sciatica was conducted. A thorough review of the included articles found that the condition known as piriformis syndrome is over-diagnosed and that potential anatomic and biomechanical variations originating in the pelvic region might be related to the complaint of sciatica. The criteria for diagnosis are based on findings from both physical examination and radio imaging. Piriformis syndrome resembles a variety of clinical conditions; therefore, conduct of future studies should include development of a validated method for evaluation as well as clinical criteria for diagnosis of piriformis syndrome.

MANDIBULAR DISTRACTION OSTEOGENESIS WITH COMPRESSION FORCE - BONE DENSITY, HISTOLOGICAL FINDINGS AND TMJ RESPONSE (압축력을 병용한 하악골 신장술)

  • Hwang, Young-Seob;Heo, June;Kim, Uk-Kyu;Park, Seong-Jin;Hwang, Dae-Seok;Kim, Yong-Deok;Chung, In-Kyo;Kim, Kyu-Cheon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.6
    • /
    • pp.531-548
    • /
    • 2006
  • The purpose of this study was to investigate the biomechanical, histologic findings of distracted regenerate and TMJ response in modified distraction osteogenesis (DO) technique combined with compression force as biomechanical stimulation method which has been suggested in 2002, and developed thereafter by authors. This study was performed with two experiments. First experiment was designed to explore the optimal ratio of compression force versus distraction force for the new DO technique. Second experiment was planned to evaluate the reaction of TMJ tissue, especially condyle, disc after application of the DO technique with compression force. Total 52 New Zealand adult male-rabbits with 3.0kg body weight were used for the study. For the first study, 30 adult male-rabbits underwent osteotomy at one side of mandibular body and a external distraction device was applied on each rabbit with same manner. In the control group of 10 rabbits, final 8 mm of distraction with 1 mm rate per day was done with conventional DO technique after 5 latency days. For the experimental group of 20 rabbits, a compression force with 1 mm rate per day was added to the distracted mandible on 3-latency day after over-distraction (over-lengthening). As the amount of the rate of compression versus distraction, experimental subgroup I (10 rabbits) was set up as 2 mm compression versus 10 mm distraction (1/5) and experimental subgroup II (10 rabbits) was set up as 3 mm compression versus 11 mm distraction (about 1/3). All 30 rabbits were set up to obtain final 8 mm distraction and sacrificed on postoperative 55 day to analysis on biomechanical, and histologic findings of the bone regenerates. For second study, 22 adult male-rabbits were used to evaluate TMJ response after the DO method application with compression force. In the control group, 10 rabbits was used to be performed with conventional DO method, on the other hand, in a experimental group of 10 rabbits, 10 mm distraction with 2 mm compression (1/5 ratio) was done. The remaining 2 rabbits served as the normal control group. Histomorphologic examinations on both condyle, histological studies on condyle, disc were done at 1, 2, 3, 4, 7 weeks after distraction force application. The results were as follows: 1. On the bone density findings, the experimental group II (force ratio - 1/3) showed higher bone density than the other experimental group (force ratio - 1/5) and control group (control group - $0,2906\;g/cm^2$, experimental group I - $0.2961\;g/cm^2$, experimental group II - $0.3328\;g/cm^2$). 2. In the histologic findings, more rapid bone maturation like as wide lamellar bone site, more trabeculae formation was observed in two experimental groups compared to the conventional DO control group. 3. In morphologic findings of condyle, there were no differences of size and architecture in the condyle in the control and experimental groups. 4. In histologic findings of condyles, there were thicker fiberous and proliferative layers in experimental group than those of control group until 2 weeks after distraction with compression force. But, no differences were seen between two groups on 3, 4, 7 weeks after compression. 5. In histologic findings of disc, more collagen contents in extracellular matrix, more regular fiber bundles, and less elastin fibers were seen in experimental group than control group until 2 weeks after distraction with compression. But, no differences were seen between two groups on 3, 4, 7 weeks after distraction with compression. From this study, we could identify that the new distraction osteogenesis technique with compression stimulation might improve the quality of bone regeneration. The no remarkable differences on TMJ response between control and experimental groups were seen and TMJ tissues were recovered similarly to normal TMJ condition after 3 weeks.