• Title/Summary/Keyword: Biome

Search Result 26, Processing Time 0.021 seconds

In Vitro Evaluation of Probiotic Properties of Two Novel Probiotic Mixtures, Consti-Biome and Sensi-Biome

  • You Jin Jang;Bonggyu Min;Jong Hyun Lim;Byung-Yong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1149-1161
    • /
    • 2023
  • Changes in the gut microbiome cause recolonization by pathogens and inflammatory responses, leading to the development of intestinal disorders. Probiotics administration has been proposed for many years to reverse the intestinal dysbiosis and to enhance intestinal health. This study aimed to evaluate the inhibitory effects of two newly designed probiotic mixtures, Consti-Biome and Sensi-Biome, on two enteric pathogens Staphylococcus aureus and Escherichia coli that may cause intestinal disorders. Additionally, the study was designed to evaluate whether Consti-Biome and Sensi-Biome could modulate the immune response, produce short-chain fatty acids (SCFAs), and reduce gas production. Consti-Biome and Sensi-Biome showed superior adhesion ratios to HT-29 cells and competitively suppressed pathogen adhesion. Moreover, the probiotic mixtures decreased the levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6 and IL-1β. Cell-free supernatants (CFSs) were used to investigate the inhibitory effects of metabolites on growth and biofilms of pathogens. Consti-Biome and Sensi-Biome CFSs exhibited antimicrobial and anti-biofilm activity, where microscopic analysis confirmed an increase in the number of dead cells and the structural disruption of pathogens. Gas chromatographic analysis of the CFSs revealed their ability to produce SCFAs, including acetic, propionic, and butyric acid. SCFA secretion by probiotics may demonstrate their potential activities against pathogens and gut inflammation. In terms of intestinal symptoms regarding abdominal bloating and discomfort, Consti-Biome and Sensi-Biome also inhibited gas production. Thus, these two probiotic mixtures have great potential to be developed as dietary supplements to alleviate the intestinal disorders.

NUMERICAL SIMULATION ON CONTROL OF HUMIDITY AND AIR TEMPERATURE IN THE GRADIENT BIOME (환경경도 바이옴 내의 온도 및 습도 제어 시뮬레이션)

  • Jeong, S.M.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.32-39
    • /
    • 2016
  • The Gradient Biome is a unique and large greenhouse(length 200 m, width 50 m, height:40 m) in which the elements of the weather, such as temperature and humidity, are controlled and reproduced in such a way as to create a continuous gradient from the tropical to frigid zones along specified longitudinal or transvers lines on the earth. One of the main purposes of the Gradient Biome is to observe the possible responses of the ecosystems (mainly plants), which are to be corresponding to each test climate and be introduced in the Biome, to the expected global warming. As one of the expected responses is the shift of the ecosystem(s) toward the region of suitable environment, there should be no artificial obstacles, which can prevent the shift, inside the facility. However, it is important but not so easy to find the ways of how the temperature and humidity in the Biome could be reproduced since the environmental variables tends to be homogeneous. In this paper, numerical simulations were carried out to find the effective control methods for air temperature and humidity inside the real scale Biome. One of the contributed solvers of OpenFOAM, which is an open source physics simulation code, was modified and used for the simulations.

The Effect of Lactobacillus gasseri BNR17 on Postmenopausal Symptoms in Ovariectomized Rats

  • Lee, Sol;Jung, Dong Hoon;Park, Miri;Yeon, Seung-Woo;Jung, Sang-Hyuk;Yun, Sung-Il;Park, Han-Oh;Yoo, Wonbeak
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1281-1287
    • /
    • 2021
  • Clinical and preclinical studies have reported that Lactobacillus gasseri BNR17, a probiotic bacterial strain isolated from human breast milk, reduces body weight and white adipose tissue volume. In order to further explore the actions of L. gasseri BNR17, we investigated the anti-menopausal effects of L. gasseri BNR17 in an ovariectomized (OVX) rat model. The serum alanine aminotransferase levels of the rats in the OVX-BNR17 group were lower than those of the rats in the OVX-vehicle only (OVX-Veh) group. Upon administration of L. gasseri BNR17 after ovariectomy, calcitonin and Serotonin 2A levels increased significantly, whereas serum osteocalcin levels showed a decreasing tendency. Compared to the rats in the OVX-Veh group, those in the OVX-BNR17 group showed lower urine deoxypyridinoline levels, lower pain sensitivity, and improved vaginal cornification. Furthermore, L. gasseri BNR17 administration increased bone mineral density in the rats with OVX-induced femoral bone loss. These results suggest that L. gasseri BNR17 administration could alleviate menopausal symptoms, indicating that this bacterium could be a good functional probiotic for managing the health of older women.

NUMERICAL SIMULATION ON CONTROL OF ENVIRONMENTAL VARIABLES FOR ENVIRONMENT REPRODUCTION SYSTEM USING OPENFOAM (OpenFOAM을 이용한 대규모 환경재현 시스템 내에서의 환경변수 제어 시뮬레이션)

  • Jeong, S.M.;Kagemoto, Hiroshi;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • The feasibility of a unique greenhouse, named as Gradient Biome, is now being examined extensively in the University of Tokyo. It is a large chamber (length:200m, width:50m, height:40m) in which the weather, such as temperature and humidity, of the tropical zone through to that of the frigid zone on the earth is reproduced with continuous gradient. In the Gradient Biome, ecosystems (mainly plants) corresponding to each weather are introduced and the possible responses of this ecosystems to the expected global warming are to be observed. Since one of the expected responses is the shift of the ecosystem(s) toward the region of suitable environment, there should be no artificial obstacles, which can prevent the shift, inside the Biome. This requirement is not so easy to be satisfied since the environment tends to be homogeneous. This paper presents the results of the numerical studies conducted to find the ways of how the temperature and humidity in the Gradient Biome could be reproduced. One of the contributed solvers of OpenFOAM, which is an open source physics simulation code, was modified and used for the numerical simulations.

Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC (BIOME-BGC 모형을 이용한 국내 소나무 고사의 기후 및 토심 영향 분석)

  • Kang, Sinkyu;Lim, Jong-Hwan;Kim, Eun-Sook;Cho, Nanghyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.242-252
    • /
    • 2016
  • A process-based ecosystem model, BIOME-BGC, was applied to simulate seasonal and inter-annual dynamics of carbon and water processes for potential evergreen needleleaf forest (ENF) biome in Korea. Two simulation sites, Milyang and Unljin, were selected to reflect warm-and-dry and cool-and-wet climate regimes, where massive diebacks of pines including Pinus densiflora, P. koraiensis and P thunbergii, were observed in 2009 and 2014, respectively. Standard Precipitation Index (SPI) showed periodic drought occurrence at every 5 years or so for both sites. Since mid-2000s, droughts occurred with hotter climate condition. Among many model variables, Cpool (i.e., a temporary carbon pool reserving photosynthetic compounds before allocations for new tissue production) was identified as a useful proxy variable of tree carbon starvation caused by reduction of gross primary production (GPP) and/or increase of maintenance respiration (Rm). Temporal Cpool variation agreed well with timings of pine tree diebacks for both sites. Though water stress was important, winter- and spring-time warmer temperature also played critical roles in reduction of Cpool, especially for the cool-and-wet Uljin. Shallow soil depth intensified the drought effect, which was, however, marginal for soil depth shallower than 0.5 m. Our modeling analysis implicates seasonal drought and warmer climate can intensify vulnerability of ENF dieback in Korea, especially for shallower soils, in which multi-year continued stress is of concern more than short-term episodic stress.

Association of lifestyle with periodontal pathogens on dental patients with periodontitis (retrospective study) (치주질환 환자의 생활양식과 치주 병원균의 연관성에 관한 후향적 연구)

  • Mu-Yeol, Cho;Se-Rim, Cho;Dal-Nim, Park;Sang-Yi, Lee
    • Journal of Korean Academy of Dental Administration
    • /
    • v.10 no.1
    • /
    • pp.42-52
    • /
    • 2022
  • This study aimed to investigate the association of lifestyle with the copy number of periodontal pathogens. This retrospective study collected electronic health records of 102 subjects with periodontitis, including reports of bacterial genetic tests and lifestyle questionnaires. The five pathogens were analyzed as follows: Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, and Fusobacterium nucleatum. The lifestyle questionnaire included age, sex, oral hygiene management, smoking, drinking, exercise, dietary, snacks, water intake, and sleeping time. An independent t-test or ANOVA was performed to compare the copy number of periodontal pathogens according to lifestyle (α=0.05). The copy numbers of P. gingivalis and F. nucleatum were significantly higher than those of other strains. The copy number of T. forsythia in patients who exercised was 54% lower than in those who did not (p=0.009). Other lifestyle factors did not affect the number of bacteria. Exercise habits among the lifestyles showed a association with the number of specific oral bacteria. This result suggests that a lifestyle questionnaire is essential in clinical situation and necessary to prevent and treat the periodontal disease effectively.

The Natural Environment during the Last Glacial Maximum Age around Korea and Adjacent Area

  • Yoon, Soon-Ock;Hwang, Sang-Ill
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.33-38
    • /
    • 2003
  • This study is conducted to examine the data of climate or environmental change in the northeastern Asia during the last glacial maximum. A remarkable feature of the 18,000 BP biome reconstructions for China is the mid-latitude extention of steppe and desert biomes to the modem eastern coast. Terrestrial deposits of glacial maximum age from the northern part of Yellow Sea suggest that this region of the continental shelf was occupied by desert and steppe vegetation. And the shift from temperate forest to steppe and desert implies conditions very much drier than present in eastern Asia. Dry conditions might be explained by a strong winter monsoon and/or a weak summer monsoon. A very strong depression of winter temperatures at LGM. has in the center of continent has influenced in northeast Asia similarly. The vegetation of Hokkaido at LGM was subarctic thin forest distributed on the northern area of middle Honshu and cool and temperate mixed forest at southern area of middle Honshu in Japan. The vegetation landscape of mountain- and East coast region of Korea was composed of herbaceous plants with sparse arctic or subarctic trees. The climate of yellow sea surface and west region of Korea was much drier and temperate steppe landscape was extended broadly. It is supposed that a temperate desert appeared on the west coast area of Pyeongan-Do and Cheolla-Do of Korea. The reconstruction of year-round conditions much colder than today right across China, Korea and Japan is consistent with biome reconstruction at the LGM.

  • PDF

Errors of MODIS product of Gross Primary Production by using Data Assimilation Office Meteorological Data (MODIS 총일차생산성 산출물의 오차요인 분석: 입력기상자료의 영향)

  • Kang Sinkyu;Kim Youngil;Kim Youngjin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.2
    • /
    • pp.171-183
    • /
    • 2005
  • In order to monitor the global terrestrial carbon cycle, NASA (National Aeronautics and Space Administration) provides 8-day GPP images by use of satellite remote-sensing reflectance data from MODIS (Moderate Resolution Imaging Spectroradiometer) at l-km nadir spatial resolution since December, 1999. MODIS GPP algorithm adopts DAO (Data Assimilation Office) meteorological data to calculate daily GPP. By evaluating reliability of DAO data with respect to surface weather station data, we examined the effect of errors from DAO data on MODIS GPP estimation in the Korean Peninsula from 2001 to 2003. Our analyses showed that DAO data underestimated daily average temperature, daily minimum temperature, and daily vapor pressure deficity (VPD), but overestimated daily shortwave radiation during the study period. Each meteorological variable resulted in different spatial patterns of error distribution across the Korean Peninsula. In MODIS GPP estimation, DAO data resulted in overestimation of GPP by $25\%$ for all biome types but up to $40\%$ for forest biomes, the major biome type in the Korean Peninsula. MODIS GPP was more sensitive to errors in solar radiation and VPD than in temperatures. Our results indicate that more reliable gridded meteorological data than DAO data are necessary for satisfactory estimation of MODIS GPP in the Korean Peninsula.

Distribution characteristics of Manchurian and China-Japan-Korea flora in Korean Peninsula

  • Kim, Nam Shin;Lim, Chi Hong;Cha, Jin Yeol;Cho, Yong Chan;Jung, Song Hie;Jin, Shi Zhu;Nan, Ying
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.259-272
    • /
    • 2022
  • Background: The Korean Peninsula exhibits a characteristic graded floral distribution, with northern (Manchurian flora) and southern (China-Japan-Korea flora) lineage species coexisting according to climatic and topographical characteristics. However, this distribution has been altered by climate change. To identify ecosystem changes caused by climate change and develop appropriate measures, the current ecological status of the entire Korean Peninsula should first be determined; however, analysis of the current floral distribution in North Korea has been hampered for political reasons. To overcome these limitations, this study constructed a database of floral distributions in both South and North Korea by integrating spatial information from the previously established National Ecological Survey in South Korea and geocoding data from the literature on biological distributions published in North Korea. It was then applied to analyze the current status and distribution characteristics of Manchurian and China-Japan-Korea plant species on the Korean Peninsula. Results: In total, 45,877 cases were included in the Manchurian and China-Japan-Korea floral distribution database. China-Japan-Korea species were densely distributed on Jeju-do and along the southern coast of the Korean Peninsula. The distribution density decreased as the latitude increased, and the distributions reached higher-latitude regions in the coastal areas compared with the inland regions. Manchurian species were distributed throughout North Korea, while they were densely distributed in the refugia formed in the high-elevation mountain regions and the Baekdudaegan in South Korea. In the current distribution of biomes classified according to the Whittaker method, subtropical and endemic species were densely distributed in temperate seasonal forest and woodland/shrubland biomes, whereas boreal species were densely distributed in the boreal forest biome Korean Peninsula, with a characteristic gradation of certain species distributed in the temperate seasonal forest biome. Factor analysis showed that temperature and latitude were the main factors influencing the distribution of flora on the Korean Peninsula. Conclusions: The findings reported herein on the current floral distribution trends across the entire Korean Peninsula will prove valuable got mitigating the ecological disturbances caused by ongoing climate change. Additionally, the gathered flora data will serve as a basis for various follow-up studies on climate change.

Identification of Aquatic Plants in the Muncheon Water Reservoir Using Drone-based Information (드론원격정보를 활용한 저수지 수생식물 분포 파악: 경북 문천저수지에서의 적용 예)

  • Lee, Geun-Sang;Kim, Sung-Wook;Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.685-689
    • /
    • 2017
  • Aquatic plants serve the crucial function of helping to balance water reservoir ecosystem, as they filter and remove major minerals required for algal growth such as nitrogen, ammonia, and nitrates. Aquatic plants provide food, shade, and protection for the aquatic biome in and around the reservoir. Thus, it is important to accurately determine the existence and areal extent of the aquatic plants. In the present study drone-based facilities were used for this purpose. In the Muncheon water reservoir, Gyeongbuk, the Normalized Difference Vegetation Index (NDVI) and Surface Algal Bloom Index (SABI) were used to determine the existence status of the aquatic plants. The data so obtained exhibited reasonable accuracy; drone-based facilities can be used in future to identify the areal extent of aquatic plants.