• Title/Summary/Keyword: Biomass-based

Search Result 950, Processing Time 0.03 seconds

Wood pelletizing using pine root waste biomass - different pelletizing properties between trunk and root biomass of Pinus densiflora (소나무 뿌리 폐기물을 이용한 목질 펠릿 제조 - 목부와 뿌리로 제조한 펠릿의 특성 비교)

  • Shin, Soo-Jeong;Han, Gyu-Seong;Myeong, Soo-Jeong;Cho, Jung-Sik;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.71-73
    • /
    • 2008
  • Different biosolid fuel (wood pellet) properties between trunk and root of pine (Pinus densiflora) biomass were investigated. Trunk has more organic solvent extracts and Klason lignin content which has higher heating values than root biomass component. In root biomass, polysaccharides content was higher than trunk biomass. Based on Higher Heating Value (HHD) analysis and ash content, trunk biomass showed better solid fuel characteristics than root biomass. But pine root biomass had lower HHD than trunk biomass, its HHD values were higher than other hardwood or annual plant lignocellulosic biomass.

  • PDF

Estimation of Community-Based Unused Biomass Generation (지역단위 미이용 바이오매스 발생량 추정)

  • Choi, Eun-Hee;Lee, Mun-Yong;Yoon, Young-Man;Kim, Chang-Hyun;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.447-458
    • /
    • 2012
  • This study was carried out to evaluation of biomass generation mechanisms and to propose the estimation method of biomass generation. Agricultural by-product biomass is generated during crops cultivation and after harvest. However these are not uniformly generated yearly and these depending on the seasons. For planning of biomass utilization, accurate information of the biomass resources is needed, especially characteristic and productivity of biomass are necessary. Agricultural by-product biomass are generated in a wide area being scattered and it is one of the major reason why agricultural biomass utilization is not activated compared with other waste biomass. In this study, estimation and evaluation biomass generation is achieved in specific spatial and temporal boundary, A-city in Gyeongi-do and september to November respectively. Quantity and quality of by-product biomass show big difference depending on the crop species and cultivation periods and these difference bring up that accurate biomass estimation should be considered during planning of biomass utilization and technology selecting for biomass converting to energy and other forms.

Estimation Model and Vertical Distribution of Leaf Biomass in Pinus sylvestris var. mongolica Plantations

  • Liu, Zhaogang;Jin, Guangze;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.576-583
    • /
    • 2009
  • Based on the stem analysis and biomass measurement of 36 trees and 1,576 branches in Pinus sylvestris var. mongolica (Mongolian pine) plantations of Northeast China, this study was conducted to develop estimation model equation for leaf biomass of a single tree and branch, to examine the vertical distribution of leaf biomass in the crown, and to evaluate the proportional ratios of biomass by tree parts, stem, branch, and leaf. The results indicated that DBH and crown length were quite appropriate to estimate leaf biomass. The biomass of single branch was highly correlated with branch collar diameter and relative height of branch in the crown, but not much with stand density, site quality, and tree height. Weibull distribution function would have been appropriate to express vertical distribution of leaf biomass. The shape parameters from 29 sample trees out of 36 were less than 3.6, indicating that vertical distribution of leaf biomass in the crown was displayed by bell-shaped curve, a little inclined toward positive side. Apparent correlationship was obtained between leaf biomass and branch biomass having resulted in linear function equation. The stem biomass occupied around 80% and branch and leaf made up about 20% of total biomass in a single tree. As the level of tree class was increased from class I to class V, the proportion of the stem biomass to total biomass was gradually increased, but that of branch and leaf became decreased.

Status of Technology and Policy for the Utilization of Biomass in Japan (일본 바이오매스 활용 정책 및 기술현황)

  • Yoon, Young-Man;Yoo, Ho-Chun;Kim, Chang-Hyun;Choi, Eun-Hee;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.459-474
    • /
    • 2012
  • Based on the general policy called "Green Growth", the Korean government planed to establish a biomass town in South Korea in order to recover energy from organic waste and to substitute for fossil fuel at rural region. Technical and financial support for the establishment of biomass town was insufficient so far. There are some policies to support biomass town establishment, however financial support from several Korean ministries seemed not to have been used efficiently. Some policies are planned excessively so that they cannot be realized on time. Therefore, there is a need to analyze the status of biomass utilization technology and policy in Japan from the point of view of an external biomass expert, since biomass utilization technology and policy of Japan take good achievement during the many developed countries. For the analyzing of technology and policy in Japan, literatures concerned biomass management policy and biomass town design were collected by visiting Japan Ministry of Agriculture, Forestry and Fisheries and interview of public officials in charge was carried out. There are several implications for the promotion of Korean policy concerned with biomass utilization and biomass town establishment.

Estimation of Forest Biomass Arising from Forest Management Operation I - Estimation Based on Simulations - (숲가꾸기 사업에서의 산림 바이오매스 발생량 추정(제1보) - 시뮬레이션에 의한 발생량 전망 -)

  • Ahn, Byeong-Il;Lee, Kyun-Shik;Kim, Chul-Hwan;Lee, Ji-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.4
    • /
    • pp.15-24
    • /
    • 2009
  • This paper estimates the nation wide amount of forest biomass arising from management operation for domestic forest based on the simulations that are composed of five scenarios for selecting the target area of thinning. In 2009, the forest biomass arising from thinning is estimated to be 6,642,174 $m^3$. The estimates of forest biomass in 2015 and 2018 are 5,935,140 $m^3$ and 5,682,538 $m^3$, respectively. Since the target forest for thinning policy is estimated to be decreasing, the biomass generated by thinning will decline too. The estimates of forest biomass can be used to induce more effective application of woody biomass rather than one-sided use such as raw materials for solid fuels including pellets and charcoals.

Analysis of Plant Height, Crop Cover, and Biomass of Forage Maize Grown on Reclaimed Land Using Unmanned Aerial Vehicle Technology

  • Dongho, Lee;Seunghwan, Go;Jonghwa, Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • Unmanned aerial vehicle (UAV) and sensor technologies are rapidly developing and being usefully utilized for spatial information-based agricultural management and smart agriculture. Until now, there have been many difficulties in obtaining production information in a timely manner for large-scale agriculture on reclaimed land. However, smart agriculture that utilizes sensors, information technology, and UAV technology and can efficiently manage a large amount of farmland with a small number of people is expected to become more common in the near future. In this study, we evaluated the productivity of forage maize grown on reclaimed land using UAV and sensor-based technologies. This study compared the plant height, vegetation cover ratio, fresh biomass, and dry biomass of maize grown on general farmland and reclaimed land in South Korea. A biomass model was constructed based on plant height, cover ratio, and volume-based biomass using UAV-based images and Farm-Map, and related estimates were obtained. The fresh biomass was estimated with a very precise model (R2 =0.97, root mean square error [RMSE]=3.18 t/ha, normalized RMSE [nRMSE]=8.08%). The estimated dry biomass had a coefficient of determination of 0.86, an RMSE of 1.51 t/ha, and an nRMSE of 12.61%. The average plant height distribution for each field lot was about 0.91 m for reclaimed land and about 1.89 m for general farmland, which was analyzed to be a difference of about 48%. The average proportion of the maize fraction in each field lot was approximately 65% in reclaimed land and 94% in general farmland, showing a difference of about 29%. The average fresh biomass of each reclaimed land field lot was 10 t/ha, which was about 36% lower than that of general farmland (28.1 t/ha). The average dry biomass in each field lot was about 4.22 t/ha in reclaimed land and about 8 t/ha in general farmland, with the reclaimed land having approximately 53% of the dry biomass of the general farmland. Based on these results, UAV and sensor-based images confirmed that it is possible to accurately analyze agricultural information and crop growth conditions in a large area. It is expected that the technology and methods used in this study will be useful for implementing field-smart agriculture in large reclaimed areas.

Estimation of unused forest biomass potential resource amount in Korea

  • Sangho Yun;Sung-Min Choi;Joon-Woo Lee;Sung-Min Park
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.317-330
    • /
    • 2022
  • Recently, the policy regarding climate change in Korea and overseas has been to promote the utilization of forest biomass to achieve net zero emissions. In addition, with the implementation of the unused forest biomass system in 2018, the size of the Korean market for manufacturing wood pellets and wood chips using unused forest biomass is rapidly expanding. Therefore, it is necessary to estimate the total amount of unused forest biomass that can be used as an energy source and to identify the capacity that can be continuously produced annually. In this study, we estimated the actual forest area that can be produced of logging residue and the potential amount of unused forest biomass resources based on GT (green ton). Using a forest functions classification map (1 : 25,000), 5th digital forest type map (1 : 25,000), and digital elevation model (DEM), the forest area with a slope of 30° or less and mountain ridges of 70% or less was estimated based on production forest and IV age class or more. The total forest area where unused forest biomass can be produced was estimated to be 1,453,047 ha. Based on GT, the total amount of unused forest biomass potential resources in Korea was estimated to be 117,741,436 tons. By forest type, coniferous forests were estimated to be 48,513,580 tons (41.2%), broad-leaved forests 27,419,391 tons (23.3%), and mixed forests 41,808,465 tons (35.5%). Data from this research analysis can be used as basic data to estimate commercial use of unused forest biomass.

Strategic Planning for Bioenergy Considering Biomass Availability in Rural Area (바이오매스 부존특성을 고려한 농촌지역 바이오에너지 보급전략)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • Unit costs for energy production in bioenergy facilities are dependent upon both fixed cost for facility construction and operational costs including biomass feedstock supply. With the increase of capacity, unit fixed cost could be decreased while supply cost tends to increase due to the longer transportation distance. It is desirable to take into account biomass availability in planning bioenergy facilities. A cumulative curve relationship was proposed to relate biomass availability and cumulative products of biomass amount and transportation distance. Optimum size of gasification facilities was affected by collection cost, biomass cumulative relationship. Based on biomass availability of Icheon-City, optimum sizes were about $400kW_{th}$ for gas production, and about $200kW_{el}$ for power generation. Unit cost of bioenergy production could be substantially reduced by reducing collection cost through supplying biomass from diverse sources including land development areas where significant amount of waste wood is generated. When planning bioenergy facilities, however, biomass availability and spatial distribution are key factors in determining the size of capacity.

Biomass-based Carbon Materials for Energy Storage and Environmental Applications (에너지 저장 및 환경 분야에 응용되는 바이오매스 기반 활성탄)

  • Balathanigaimani, M.S.;Shim, Wang Geun;Kim, Sang Chai
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • The importance of the biomass-based activated carbon as an adsorbent has been reviewed with emphasizing on the application in the fields of energy storage and environmental related problems. It is clear from the literature survey that beside surface area and pore volume, surface chemistry also plays important role in determining their usage in various field. The capacities of biomass-based activated carbon can be increased depending upon the choice of the biomass used and the pathway taken for their activation and hence they can be tailored for various applications. Accordingly, this review summarizes the role of biomass based activated carbon in different applications.

Forest Biomass Utilization for Energy Based on Scientifically Grounded and Orthodox (산림바이오매스에너지에 관한 과학적 근거에 따른 통설적 접근)

  • Seung-Rok Lee;Gyu-Seong Han
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.145-174
    • /
    • 2024
  • Addressing climate change necessitates evidence-based policies grounded in science. The use of forest biomass for energy production is based on a broad scientific consensus at the international level. However, some environmental groups in South Korea are opposing this system of energy production. Through this study, the authors aim to reduce unnecessary confusion and foster an atmosphere conducive to meaningful evidence-based policies. We have classified the issue into eight categories: biological carbon cycle, carbon debt, nature-based solutions, air emissions, cascading principles and sustainability certification, forest environmental impacts, climate change litigation, and the behavior of environmental groups and public perception. Consequently, the following key points were derived: (1) the actions of some environmental groups seem to follow a similar pattern to denialist behavior that denies climate change and climate science; (2) the quality of evidence for campaigns that oppose the use of forest biomass for energy production is low, with a tendency to overgeneralize information, high uncertainty, and difficulty in finding new claims.; (3) most of the public believes that forest biomass energy is necessary, and the governments of major countries are aware of its importance. Significantly, Forest biomass for energy is based on an overwhelming level of scientific consensus recognized internationally.