Browse > Article
http://dx.doi.org/10.14478/ace.2016.1108

Biomass-based Carbon Materials for Energy Storage and Environmental Applications  

Balathanigaimani, M.S. (Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology)
Shim, Wang Geun (Department of Polymer Science and Engineering, Sunchon National University)
Kim, Sang Chai (Department of Environmental Education, Mokpo National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.1, 2017 , pp. 8-16 More about this Journal
Abstract
The importance of the biomass-based activated carbon as an adsorbent has been reviewed with emphasizing on the application in the fields of energy storage and environmental related problems. It is clear from the literature survey that beside surface area and pore volume, surface chemistry also plays important role in determining their usage in various field. The capacities of biomass-based activated carbon can be increased depending upon the choice of the biomass used and the pathway taken for their activation and hence they can be tailored for various applications. Accordingly, this review summarizes the role of biomass based activated carbon in different applications.
Keywords
biomass; activated carbon; gas storage; EDLC; VOC removal;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Wang, Z. Li, J. K. Tak, C. M. B. Holt, X. Tan, Z. Xu, B. S. Amrirkhiz, D. Harfield, A. Amyia, T. Stephenson, and D. Mitlin, Supercapacitors based on carbons with tuned porosity derived from paper pulp mill sludge biowaste, Carbon, 57, 317-328 (2013).   DOI
2 J. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, and M. Zheng, Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density, J. Power Sources, 240, 109-113 (2013).   DOI
3 E. N. Ruddy and L. A. Carroll, Select the best VOC control strategy, Chem. Eng. Prog., 89, 28-35 (1993).
4 M. J. Ruhl, Recover VOCs via adsorption on activated carbon, Chem. Eng. Prog., 89, 37-41 (1993).
5 J. H. Yun, K. Y. Hwang, and D. K. Choi, Adsorption of benzene and toluene vapors on activated carbon fiber at 298, 323, and 348 K, J. Chem. Eng. Data, 43, 843-845 (1998).   DOI
6 M. A. Lillo-Rodenas, J. Carratala-Abrill, D. Cazorla-Amoros, and A. Linares-Solano, Usefulness of chemically activated anthracite for the abatement of VOC at low concentrations, Fuel Process. Technol., 77-78, 331-336 (2002).   DOI
7 M. A. Lillo-Rodenas, D. Cazorla-Amoros, and A. Linares-Solano, Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations, Carbon, 43, 1758-1767 (2005).   DOI
8 J. W. Lee, W. G. Shim, M. S. Yang, and H. Moon, Adsorption isotherms of polar and nonpolar organic compounds on MCM-48 at (303.15, 313.15, and 323.15) K, J. Chem. Eng. Data, 49, 502-509 (2004).   DOI
9 J. Benkhedda, J. N. Jaubert, D. Barth, and L. Perrin, Experimental and modeled results describing the adsorption of toluene onto activated carbon, J. Chem. Eng. Data, 45, 650-653, (2000).   DOI
10 F. D. Yu, L. A. Auo, and G. Grevillot, Adsorption isotherms of VOCs onto an activated carbon monolith: experimental measurement and correlation with different models J. Chem. Eng. Data, 47, 467-473 (2002).   DOI
11 J. H. Yun and D. K. Choi, Adsorption equilibria of chlorinated organic solvents onto activated carbon, Ind. Eng. Chem. Res., 37, 1422-1427 (1998).   DOI
12 J. W. Lee, J. W. Lee, W. G. Shim, S. H. Suh, and H. Moon, Adsorption of chlorinated organic compounds on MCM-48. J. Chem. Eng. Data, 48, 381-387 (2003).   DOI
13 T. Zhang, W. P. Walawender, and L. T. Fan, Grain-based activated carbons for natural gas storage, Bioresour. Technol., 101, 1983-1991 (2010).   DOI
14 E. Fitzer, K. H. Kochling, H. P. Boehm, and H. Marsh, Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995), Pure Appl. Chem., 67, 473-506 (1995).   DOI
15 T. Zhang, W. P. Walawender, L. T. Fan, M. Fan, D. Daugaard, and R. C. Brown, Preparation of activated carbon from forest and agricultural residues through $CO_2$ activation, Chem. Eng. J., 105, 53-59 (2004).   DOI
16 M. S. Balathanigaimani, W. G. Shim, J. W. Lee, and H. Moon, Adsorption of methane on novel corn grain-based carbon monoliths Microporous Mesoporous Mater., 119, 47-52 (2009).   DOI
17 N. Bagheri and J. Abedi, Adsorption of methane on corn cobs based activated carbon, Chem. Eng. Res. Des., 89, 2038-2043 (2011).   DOI
18 R. B. Rios, F. W. M. Silva, A. E. B. Torres, D. C. S. Azevedo, and C. L. Cavalcante, Adsorption of methane in activated carbons obtained from coconut shells using $H_3PO_4$ chemical activation, Adsorption, 15, 271-277 (2009).   DOI
19 J. W. Lee, M. S. Balathanigaimani, H. C. Kang, W. G. Shim, C. Kim, and H. Moon, Methane storage on phenol-based activated carbons at (293.15, 303.15, and 313.15) K, J. Chem. Eng. Data, 52, 66-70 (2007).   DOI
20 K. Inomata, K. Kanazawa, Y. Urabe, H. Ozono, and T. Araki, Natural gas storage in activated carbon pellets without a binder, Carbon, 40, 87-93 (2002).   DOI
21 F. O. Erdogan and T. Kopac, Dynamic analysis of sorption of hydrogen in activated carbon, Int. J. Hydrogen Energy, 32, 3448-3456 (2007).   DOI
22 W. C. Annemieke, V. D. Berg, and C. O. Arean, Materials for hydrogen storage: current research trends and perspectives, Chem. Commun., 6, 668-681 (2008).
23 L. L. Vasiliev, L. E. Kanonchik, A. G. Kulakov, D. A. Mishkins, A. M. Safonova, and N. K. Luneva, New sorbent materials for the hydrogen storage and transportation, Int. J. Hydrogen Energy, 32, 5015-5025 (2007).   DOI
24 G. D. Berry and S. M. Aceves, Onboard storage alternatives for hydrogen vehicles, Energy Fuels, 12, 49-55 (1998).   DOI
25 Y. C. Chiang, P. C. Chiang, and C. P. Huang, Effects of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 39, 523-534 (2001).   DOI
26 J. S. Oh. W. G. Shim, J. W. Lee, J. H. Kim, H. Moon, and G. Seo, Adsorption equilibria of water vapor on mesoporous materials, J. Chem. Eng. Data, 48, 1458-1462 (2003).   DOI
27 M. A. Lillo-Rodenas, A. J. Fletcher, K. M. Thomas, D. Cazorla-Amoros, and A. Linares-Solano, Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration, Carbon, 44, 1455-1463 (2006).   DOI
28 M. C. Huang, C. H. Chou, and H. Teng, Pore-size effects on activated carbon capacities for volatile organic compound adsorption, AIChE J., 48, 1804-1810 (2002).   DOI
29 D. Lozano-Castello, M. A. Lillo-Rodenas, D. Cazorla-Amoros, and A. Linares-Solano, Preparation of activated carbons from Spanish anthracite: I. Activation by KOH, Carbon, 39, 741-749 (2001).   DOI
30 H. Teng and H. C. Lin, Activated carbon production from low ash subbituminous coal with $CO_2$ activation, AIChE J., 44, 1170-1177 (1998).   DOI
31 K. Nakagawa, S. R. Mukai, T. Suzuki, and H. Tamon, Gas adsorption on activated carbons from PET mixtures with a metal salt, Carbon, 41, 823-831 (2003).   DOI
32 R. Gong, Y. Ding, M. Li, C. Yang, H. Liu, and Y. Sun, Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution, Dyes Pigm., 64, 187-192 (2005).   DOI
33 L. Schlapbach and A. Zuttel, A. Hydrogen-storage materials for mobile applications, Nature, 414, 353-358 (2001).   DOI
34 K. L. Foster, R. G. Fuerman, J. Economy, S. M. Larson, and M. J. Rood, Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers, Chem. Mater., 4, 1068-1073 (1992).   DOI
35 A. B. Fuertes, G. Marban, and D. M. Nevskaia, Adsorption of volatile organic compounds by means of activated carbon fibre-based monoliths, Carbon, 41, 87-96 (2003).   DOI
36 G. Crini, Non-conventional low-cost adsorbents for dye removal: A review, Bioresour. Technol., 97, 1061-1085 (2006).   DOI
37 A. A. Attia, B. S. Girgis, and N. A. Fathy, Removal of methylene blue by carbons derived from peach stones by $H_3PO_4$ activation: Batch and column studies, Dyes Pigm., 76, 282-289 (2008).   DOI
38 T. Robinson, B. Chandran, and P. Nigam, Synthetic textile dye effluent by biosorption on apple pomace and wheat straw, Water Res., 36, 2824-2830 (2002).   DOI
39 C. Namasivayam and N. Kanchana, Waste banana pith as adsorbent for color removal from wastewaters, Chemosphere, 25, 1691-1705 (1992).   DOI
40 C. Namasivayam, N. Muniasamy, K. Gayatri, M. Rani, and K. Ranganathan, Removal of dyes from aqueous solutions by cellulosic waste orange peel, Bioresour. Technol., 57, 37-43 (1996).   DOI
41 V. K. Garg, M. Amita, R. Kumar, and R. Gupta, Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: a timber industry waste, Dyes Pigm., 63, 243-250 (2004).   DOI
42 Y. Bulut, N. Gozubenli, and H. Aydin, Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells, J. Hazard. Mater., 144, 300-306 (2006).
43 R. C. Bansal, J. B. Donnet, and F. F. Stoeckli, Active Carbon, 67-89, Marcel Dekker, New York, NY, USA (1988).
44 R. L. Tseng and S. K. Tseng, Characterization and use of high surface area activated carbons prepared from cane pith for liquid-phase adsorption, J. Hazard. Mater., B136, 671-680 (2006).
45 C. F. Chang, C. Y. Chang, and W. T. Tsai, Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by $CO_2$ and steam, J. Colloid Interface Sci., 232, 45-49 (2000).   DOI
46 H. Demiral, I. Demiral, F. Tumsek, and B. Karabacakoglu, Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation, Surf. Interface Anal., 40, 616-619 (2008).   DOI
47 H. Jankowska, A. Switakowski, and J. Choma, Active Carbon, 13-74, Ellis Horwood, New York, NY, USA (1991).
48 E. Poirier, R. Chahine, P. Benard, D. Cossement, L. Lafi, E. Melancon, T. K. Bose, and S. Desilets, Storage of hydrogen on single-walled carbon nanotubes and other carbon structures, Appl. Phys. A, 78, 961-967 (2004).
49 M. Felderhoff, C. Weidenthaler, R. V. Helmolt, and U. Eberle, Hydrogen storage: the remaining scientific and technological challenges, Phys. Chem. Chem. Phys., 9, 2643-2653 (2007).   DOI
50 M. Jorada-Beneyto, F. Suarez-Garcia, D. Lozano-Castello, D. Cazorla-Amoros, and A. Linares-Solano, Hydrogen storage on chemically activated carbons and carbon nanomaterials at high pressures, Carbon, 45, 293-303 (2007).   DOI
51 K. Mark Thomas, Hydrogen adsorption and storage on porous materials, Catal. Today, 120, 389-398 (2007).   DOI
52 B. Buczek, L. Czepirski, and J. Zietkiewicz, Improvement of hydrogen storage capacity for active carbon, Adsorption, 11, 877-880 (2005).   DOI
53 L. Zubizarreta, E. I. Gomez, A. Arenillas, C. O. Ania, J. B. Parra, and J. J. Pis, $H_2$ storage in carbon materials, Adsorption, 14, 557-566 (2008).   DOI
54 M. Jorada-Beneyto, D. Lozano-Castello, F. Suarez-Garcia, D. Cazorla-Amoros, and A. Linares-Solano, Advanced activated carbon monoliths and activated carbons for hydrogen storage, Microporous Mesoporous Mater., 112, 235-242 (2008).   DOI
55 L. Zhou, Y. Zhou, and Y. Sun, Enhanced storage of hydrogen at the temperature of liquid nitrogen, Int. J. Hydrogen Energy, 29, 319-322 (2004).   DOI
56 K. Babel and K. Jurewicz, KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption, Carbon, 46, 1948-1956 (2008).   DOI
57 Y. Bulut and Z. Tez, Removal of heavy metals from aqueous solution by sawdust adsorption, J. Environ. Sci., 19, 160-166 (2007).   DOI
58 L. Chun, C. Hongzhang, and L. Zuohu, Adsorptive removal of Cr(VI) by Fe-modified steam exploded wheat straw, Process Biochem., 39, 541-545 (2004).   DOI
59 N. Feng, X. Guo, S. Liang, Y. Zhu, and J. Liu, Biosorption of heavy metals from aqueous solutions by chemically modified orange peel, J. Hazard. Mater., 185, 49-54 (2011).   DOI
60 J. G. Flores-Ganaica, L. Morales-Barrera, G. Pineda-Cannacho, and E. Cristiani-Urbina, Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds, Bioresour. Technol., 136, 635-643 (2013).   DOI
61 F. Rodriquez-Reinoso and M. Molaina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview, Carbon, 30, 1111-1118 (1992).   DOI
62 M. Molaina-Sabio, F. Rodriquez-Reinoso, F. Caturla, and M. J. Selles, Porosity in granular carbons activated with phosphoric acid, Carbon, 33, 1105-1113 (1995).   DOI
63 A. Ahmadpour and D. D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, 34, 471-479 (1996).   DOI
64 M. A. Lillo-Rodenas, D. Cazorla-Amoros, and A. Linares-Solano, Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism, Carbon, 41, 267-275 (2003).   DOI
65 R. A. Hutchins, Development of design parameters, In: J. R. Perrich (eds.). Activated Carbon Adsorption for Wastewater Treatment, 29-37, CRC Press, Boca Raton, FL, USA (1981).
66 S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, 5-156, Kluwer academic publishers, The Netherlands (2004).
67 M. Sevilla, A. B. Fuertesa, and R. Mokaya, High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy Environ. Sci., 4, 1400-1410 (2011).   DOI
68 P. S. Kumar, S. Ramalingam, R. V. Abhinaya, S. D. Kirupa, A. Murugesan, and S. Sivanesan, Adsorption of metal ions onto the chemically modified agricultural waste, Clean (Weinh), 40, 188-197 (2012).
69 M. Kruk, M. Jaroniec, and J. Choma, Comparative analysis of simple and advanced sorption methods for assessment of microporosity in activated carbons, Carbon, 36, 1447-1458 (1998).   DOI
70 M. Kruk, M. Jaroniec, and K. P. Gadkaree, Nitrogen adsorption studies of novel synthetic active carbons, J. Colloid Interface Sci., 192, 250-256 (1997).   DOI
71 V. Menon and S. J. Komarneni, Porous adsorbents for vehicular natural gas storage: A review, J. Porous Mater., 5, 43-58 (1998).   DOI
72 R. Yang, G. Liu, M. Li, J. Zhang, and X. Hao, Preparation and $N_2,\;CO_2\;and\;H_2$ adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem, Microporous Mesoporous Mater., 158, 108-116 (2012).   DOI
73 T. H. Liou, Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation, Chem. Eng. J., 158, 129-142 (2010).   DOI
74 Z. Yang, Y. Xia, and R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials, J. Am. Chem. Soc., 129, 1673-1679 (2007).   DOI
75 J. Wang, I. Senkovska, S. Kaskel, and Q. Liu, Chemically activated fungi-based porous carbons for hydrogen storage, Carbon, 75, 372-380 (2014).   DOI
76 H. Wang, Q. Gao, and J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon, J. Am. Chem. Soc., 131, 7016-7022 (2009).   DOI
77 V. Fierro, A. Szczurek, C. Zlotea, J. F. Mareche, M. T. Izquierdo, A. Albiniak, M. Latroche, G. Furdin, and A. Celzard, Experimental evidence of an upper limit for hydrogen storage at 77 K on activated carbons, Carbon, 48, 1902-1911 (2010).   DOI
78 N. Bader and A. Ouederni, Optimization of biomass-based carbon materials for hydrogen storage, J. Energy Storage, 5, 77-84 (2016).   DOI
79 R. Chahine and T. K. Bose, Low-pressure adsorption storage of hydrogen, Int. J. Hydrogen Energy, 19, 161-164 (1994).   DOI
80 D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, and D. F. Quinn, Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size, Carbon, 40, 989-1002 (2002).   DOI
81 M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. van Dillen, and K. P. de Jong, Hydrogen storage using physisorption-materials demands, Appl. Phys. A, 72, 619-623 (2001).   DOI
82 H. Jin, Y. S. Lee, and I. Hong, Hydrogen adsorption characteristics of activated carbon, Catal. Today, 120, 399-406 (2007).   DOI
83 E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors Carbon, 39, 937-950 (2001).   DOI
84 M. J. Bleda-Martinez, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, and A. Linares-Solano, Chemical and electrochemical characterization of porous carbon materials, Carbon, 44, 2642-2651 (2006).   DOI
85 J. H. Yun and D. K. Choi, Adsorption isotherms of benzene and methylbenzene vapors on activated carbon, J. Chem. Eng. Data, 42, 894-896 (1997).   DOI
86 S. J. Yang, H. Jung, T. Kim, and C. R. Park, Recent advances in hydrogen storage technologies based on nanoporous carbon materials, Prog. Nat. Sci., 22, 631-638 (2012).   DOI
87 P. A. Georgiev, D. K. Ross, P. Albers, and A. J. Ramirez-Cuesta, The rotational and translational dynamics of molecular hydrogen physisorbed in activated carbon: A direct probe of microporosity and hydrogen storage performance, Carbon, 44, 2724-2738 (2006).   DOI
88 I. Cabria, M. J. López, and J. A. Alonso, The optimum average nanopore size for hydrogen storage in carbon nanoporous materials, Carbon, 45, 2649-2658 (2007).   DOI
89 W. G. Shim, J. W. Lee, and H. Moon, Adsorption of carbon tetrachloride and chloroform on activated carbon at (300.15, 310.15, 320.15 and 330.15) K, J. Chem. Eng. Data, 48, 286-290 (2003).   DOI
90 A. Dabrowski, P. Podkoscielny, Z. Hubicki, and M. Barczak, Adsorption of phenolic compounds by activated carbon-A critical review, Chemosphere, 58, 1049-1070 (2005).   DOI
91 M. Endo, Y. J. Kim, H. Ohta, K. Ishii, T. Inone, T. Hayashi, Y. Nishimura, T. Maeda, and M. S. Dresselhaus, Morphology and organic EDLC applications of chemically activated AR-resin-based carbons, Carbon, 40, 2613-2626 (2002).   DOI
92 R. Kotz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 45, 2483-2498 (2000).   DOI
93 C. L. Liu, W. Dong, G. Cao, J. Song, L. Liu, and Y. Yang, Y. Capacitance limits of activated carbon fiber electrodes in aqueous electrolyte, J. Electrochem. Soc., 155, F1-F7 (2008).   DOI
94 E. Raymundo-Pinero, F. Leroux, and F. Beguin, A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer, Adv. Mater., 18, 1877-1882 (2006).   DOI
95 S. Wang and Z. H. Zhu, Effects of acidic treatment of activated carbons on dye adsorption, Dyes Pigm., 75, 306-314 (2007).   DOI
96 C. Hung-Lung, L. Kuo-Hsiung, C. Shih-Yu, C. Ching-Guan, and P. San-De, Dye adsorption on biosolid adsorbents and commercially activated carbon, Dyes Pigm., 75, 52-59 (2007).   DOI
97 S. Ismadji and S. K. Bhatia, Characterization of activated carbons using liquid phase adsorption, Carbon, 39, 1237-1250 (2001).   DOI
98 A. Amaya, N. Medero, N. Tancredi, H. Silva, and C. Deiana, Activated carbon briquettes from biomass materials, Bioresour. Technol., 98, 1635-1641 (2007).   DOI
99 O. Ioannidou and A. Zabaniotou, Agricultural residues as precursors for activated carbon production-A review, Renew Sustain. Energy Rev., 11, 1966-2005 (2007).   DOI
100 R. M. Suzuki, A. D. Andrade, J. C. Sousa, and M. C. Rollemberg, Preparation and characterization of activated carbon from rice bran. Bioresour. Technol., 98, 1985-1991 (2007).   DOI
101 S. Biloe, V. Goetz, and S. Mauran, Characterization of adsorbent composite blocks for methane storage, Carbon, 39, 1653-1662 (2001).   DOI
102 A. Perrin, A. Celzard, A. Albiniak, M. Jasienko-Halat, J. F. Mareche, and G. Furdin, NaOH activation of anthracites: effect of hydroxide content on pore textures and methane storage ability, Microporous Mesoporous Mater., 81, 31-40 (2005).   DOI
103 E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 9, 1774-1785 (2007).   DOI
104 M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev., 104, 4245-4269 (2004).   DOI
105 J. P. Zheng, Theoretical energy density for electrochemical capacitors with intercalation electrodes, J. Electrochem. Soc., 152, A1864-A1869 (2005).   DOI
106 A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochim. Acta, 53, 1083-1091 (2007).   DOI
107 V. Ruiz, C. Blanco, E. Raymundo-Pinero, V. Khomenko, F. Beguin, and R. Santamaria, Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors, Electrochim. Acta, 52, 4969-4973 (2007).   DOI
108 A. G. Pandolfo and F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 157, 11-27 (2006).   DOI
109 G. Lota, T. A. Centeno, E. Frackowiak, and F. Stoeckli, Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors, Electrochim. Acta, 53, 2210-2216 (2008).   DOI
110 M. J. Bleda-Martinez, J. A. Macia-Agullo, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, and A. Linares-Solano, Role of surface chemistry on electric double layer capacitance of carbon materials, Carbon, 43, 2677-2684 (2005).   DOI
111 J. Chmiola, G. Yushin, R. Dash, and Y. Gogotsi, Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources, 158, 765-772 (2006).   DOI
112 Y. Lv, L. Gan, M. Liu, W. Xiong, Z. Xu, D. Zhu, and D. S. Wright, A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes J. Power Sources, 209, 152-157 (2012).   DOI
113 R. Basumatary, P. Dutta, B. Prasad, and K. Srinivasan, Thermal modeling of activated carbon based adsorptive natural gas storage system, Carbon, 43, 541-549 (2005).   DOI
114 T. D. Burchell, Carbon Materials for Advanced Technologies, Pergamon press, Oxford, UK (1999).
115 T. E. Rufford. D. Hulicova-Juracakova, K. Khosla. Z. Zhu, and G. Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources, 195, 912-918 (2010).   DOI
116 C. H. Huang and R. Y. Doong, Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly, Microporous Mesoporous Mater., 147, 47-52 (2012).   DOI
117 P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, H. Cai, H. Liu, C. P. Wong, and A. Umar, Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode, Nanoscale, 6, 12120-12129 (2014).   DOI
118 M. Olivares-Marin, J. A. Fernandez, M. J. Lazaro, C. Fernandez-Gonzalez, A. Macias-Garcia, V. Gomez-Serrano, and F. Stoeckli, Cherry stones as precursor of activated carbons for supercapacitors, Mater. Chem. Phys., 114, 323-327 (2009).   DOI
119 D. F. Quinn and J. A. MacDonald, Natural gas storage, Carbon, 30, 1097-1103 (1992).   DOI
120 D. Lozano-Castello, J. Alcaniz-Monge, M. A, de la Casa-Lillo, D. Cazorla-Amoros, and A. Linares-Solano, Advances in the study of methane storage in porous carbonaceous materials, Fuel, 81, 1777-1803 (2002).   DOI
121 K. R. Matranga, A. L. Myers, and E. D. Glanndt, Storage of natural gas by adsorption on activated carbon Chem. Eng. Sci., 47, 1569-1579 (1992).   DOI
122 C. D. Wood, B. Tan, A. Trewin, F. Su, M J. Rosseinsky, D. Bradshaw, Y. Sun, L. Zhou, and A. I. Cooper, Microporous organic polymers for methane storage, Adv. Mater., 20, 1916-1921 (2008).   DOI
123 R. E. Morris and P. S. Wheatley, Gas storage in nanoporous materials, Angew. Chem. Int. Ed., 47, 4966-4981 (2008).   DOI
124 US DOE's MOVE Program: https://arpa-e.energy.gov/.
125 R. F. Serveice, Stepping on the gas, Science, 346, 538-541 (2014).   DOI
126 J. P. B. Mota, Impact of gas composition on natural gas storage by adsorption, AIChE J., 45, 986-996 (1999).   DOI
127 M. S. Balathanigaimani, H. C. Kang, W. G. Shim, C. Kim, J. W. Lee, and H. Moon, Preparation of powdered activated carbon from rice husk and its methane adsorption properties, Korean J. Chem. Eng., 23, 663-668 (2006).   DOI
128 M. S. Balathanigaimani, M. J. Lee, W. G. Shim, J. W. Lee, and H. Moon, Charge and discharge of methane on phenol-based carbon monolith, Adsorption, 14, 525-532 (2008).   DOI
129 F. C. Wu, R. L. Tseng, C. C. Hu, and D. D. Wang, Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors, J. Power Sources, 138, 351-359 (2004).   DOI
130 G. Dobelea, T. Dizhbitea, M. V. Gilb, A. Volpertsa, and T. A. Centenob, Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and $CO_2$ capture, Biomass Bioenergy, 46, 145-154 (2012).   DOI
131 X. Xia, H. Liu, L. Shi, and Y. He, Tobacco stem-based activated carbons for high performance supercapacitors, J. Mater. Eng. Perform., 21, 1956-1961 (2012).   DOI