• Title/Summary/Keyword: Biomass productivity

Search Result 370, Processing Time 0.024 seconds

Higher Biomass Productivity of Microalgae in an Attached Growth System, Using Wastewater

  • Lee, Seung-Hoon;Oh, Hee-Mock;Jo, Beom-Ho;Lee, Sang-A;Shin, Sang-Yoon;Kim, Hee-Sik;Lee, Sang-Hyup;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1566-1573
    • /
    • 2014
  • Although most algae cultivation systems are operated in suspended culture, an attached growth system can offer several advantages over suspended systems. Algal cultivation becomes light-limited as the microalgal concentration increases in the suspended system; on the other hand, sunlight penetrates deeper and stronger in attached systems owing to the more transparent water. Such higher availability of sunlight makes it possible to operate a raceway pond deeper than usual, resulting in a higher areal productivity. The attached system achieved 2.8-times higher biomass productivity and total lipid productivity of $9.1g\;m^{-2}day^{-1}$ and $1.9g\;m^{-2}day^{-1}$, respectively, than the suspended system. Biomass productivity can be further increased by optimization of the culture conditions. Moreover, algal biomass harvesting and dewatering were made simpler and cheaper in attached systems, because mesh-type substrates with attached microalgae were easily removed from the culture and the remaining treated wastewater could be discharged directly. When the algal biomass was dewatered using natural sunlight, the palmitic acid (C16:0) content increased by 16% compared with the freeze-drying method. There was no great difference in other fatty acid composition. Therefore, the attached system for algal cultivation is a promising cultivation system for mass biodiesel production.

Nutrient Depletion and Primary Productivity in the Marginal Ice Zone of the Northwestern Weddell Sea During Austral Summer

  • Kang, Sung-Ho;Chung, Kyung-Ho;Kim, Dong-Yup;Park, Byong-Kwon;Kim, Dong-Seon
    • Journal of the korean society of oceanography
    • /
    • v.35 no.1
    • /
    • pp.34-45
    • /
    • 2000
  • Spatial distributions of phytoplankton biomass and nutrients were examined to investigate the magnitude of phytoplankton blooms along the marginal ice zone (MIZ) in the northwestern Weddell Sea during austral summer of 1995. High phytoplankton biomass was associated with the MIZ in the study area. Vertical stability induced by meltwater appears to be the most important factor controlling phytoplankton biomass distribution. Nitrate concentrations are significantly depleted within the upper water column at the phytoplankton biomass maximum. The time required to attain the observed nutrient depletion was calculated from phytoplankton biomass and nitrate depletion, which ranges from 27 to 68 days in transect 4 and from 33 to 145 days in transect 3. Phytoplankton production was also calculated from nitrate depletion and time-scales of nitrate depletion, which varies from 272 to 1752 mg C m$^{-2}$ day$^{-1}$ in transect 4 and from 327 to 2648 mg C m$^{-2}$ day$^{-1}$ in transect 3. In the Southern Ocean where primary productivity shows large temporal and spatial variations, the productivity measurement from nutrient depletion can provide an average rate of primary production during phytoplankton bloom.

  • PDF

Treatment of Acid Mine Drainage using Eggshells and Microalgae (폐난각과 미세조류를 이용한 산성광산배수처리)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.647-652
    • /
    • 2014
  • The aim of this study was to investigate the heavy metal removal and biomass productivity in the Acid Mine Drainage (AMD) using eggshell and microalgae. The experiment was operated 6 days in the eggshell and microalgae hybrid system, and using eggshell powder and microalgae as Chlorella vulgaris. The obtained result indicated that the biomass productivity of 2.82 g/L/d from 1.12 g/L initial concentration in 6 days was reached with light transmittance of 97% at a 305 mm depth in the optical panel photobioreactor (OPPBR). The total removal efficiency of Fe, Cu, Zn, Mn and Cd was found to be 98.92%, 99.91%, 98.78%, 88.99% and 98.00% in the AMD using eggshell and Chlorella vulgaris hybrid system, respectively. Additionally, there were significant relationships between biomass and concentration of each heavy metal ($R^2$ = 0.8771, 0.8643, 0.8669, 0.9134 and 0.6277 for Fe, Cu, Zn, Mn and Cd). These results indicated that the eggshell and microalgae hybrid system was highly effective for heavy metal removal when compared to the conventional biological process in the AMD. Therefore, the eggshell and microalgae hybrid system was effective for heavy metal removal and biomass productivity and can be applied to treat AMD in treatment plant.

Growth Characteristics of Mixotrophic Scenedesmus acuminatus under Semi-Continuous Culture System (혼합영양생물인 Scenedesmus acuminatus의 반연속 배양 시 성장특성 연구)

  • Gao, Suyan;Hong, Kai;Lee, Taeyoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.332-338
    • /
    • 2017
  • The purpose of this study was to determine optimum value of aeration, acetate dosage, and $CO_2$ input for the cultivation of Scenedesmus acuminatus. Highest specific growth rate and maximum biomass productivity was obtained by the aeration of 0.72 vvm and lower specific growth rates and maximum biomass productivity were obtained for other aeration tests. When putting 0.3 M of ammonium acetate in JM medium, the highest specific growth rate and maximum biomass productivity were obtained. $CO_2$ input tests were performed during semi-continuous culturing tests. The highest specific growth rate ($0.460d^{-1}$) and maximum biomass productivity ($0.936gL^{-1}d^{-1}$) were obtained after replacing 50% of solution with 0.3 M of acetate solution for $CO_2$ input tests. However, more dilutions after the first dilution resulted in lower specific growth rate and maximum biomass productivity. In aeration tests, the highest specific growth rate ($0.381d^{-1}$) and maximum biomass productivity ($0.253gL^{-1}d^{-1}$) were obtained when cultivating it with JM medium, but the specific growth rate and maximum biomass producitivty were significantly decreased when 50% of solution was replaced by acetate containing solution.

Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors

  • Kim, Z-Hun;Park, Hanwool;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1098-1102
    • /
    • 2016
  • A green microalga, Tetraselmis sp., was cultivated in the coastal seawater of Young-Heung Island using semi-permeable membrane photobioreactors (SPM-PBRs) in different seasons. The microalgae in the SPM-PBRs were able to grow on nutrients diffused into the PBRs from the surrounding seawater through SPMs. The biomass productivity varied depending on the ion permeabilities of the SPMs and environmental conditions, whereas the quality and quantity of fatty acids were constant. The temperature of seawater had a greater influence than solar radiation did on productivity of Tetraselmis sp. in SPM-PBRs. SPM-PBRs could provide technologies for concurrent algal biomass and fatty acids production, and eutrophication reduction in the ocean.

Allometry, Biomass and Productivity of Quercus Forests in Korea: A Literature-based Review

  • Li, Xiaodong;Yi, Myong-Jong;Son, Yo-Whan;Jin, Guangze;Lee, Kyeong-Hak;Son, Yeong-Mo;Kim, Rae-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.726-735
    • /
    • 2010
  • Publications with the data on allometric equation, biomass and productivity of major oak forests in Korea were reviewed. Different allometric equations of major oak species showed site- or speciesspecific dependences. The biomass of major oak forests varied with age, dominant species, and location. Aboveground tree biomass over the different oak species was expressed as a power equation of the stand age. The proportion of tree component (stem, branch and leaf) to total aboveground biomass differed among oak species, however, biomass ranked stem > branch > leaf in general. The leaf biomass allocation over the different oak species was expressed as a power equation of total aboveground biomass while there were no significant patterns of biomass allocation from stem and branch to the aboveground biomass. Tree root biomass continuously increased with the aboveground biomass for the major oak forests. The relationship between the root to shoot ratio and the aboveground tree biomass was expressed by a logarithmic equation for major oak forests in Korea. Thirteen sets of data were used for estimating the net primary production (NPP) and net ecosystem production (NEP) of oak forests. The mean NPP and NEP across different oak forests was 10.2 and 1.9 Mg C $ha^{-1}year^{-1}$. The results in biomass allocation, NPP and NEP generally make Korean oak forests an important carbon sinks.

Characteristics and Variation of Size-fractionated Zooplankton Biomass in the Northern East China Sea (동중국해 북부해역의 동물플랑크톤 크기그룹별 생체량의 분포 특성 및 변화)

  • Choi, Keun-Hyung;Lee, Chang-Rae;Kang, Hyung-Ku;Kang, Kyeong-A
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.135-147
    • /
    • 2011
  • Zooplankton is an important constituent in assessing ecosystem responses to global warming. The northern East China Sea is an important ecosystem for carbon cycling with a net sink of carbon dioxide. Despite their importance as a major component in carbon cycling, relatively little is known about zooplankton biomass structure and its regulating factors in the northern East China Sea. This study examined zooplankton biomass distribution pattern in the region from multiple cruises encompassing various seasons between 2004 and 2009. Results showed that zooplankton biomass exhibits less cross-shelf gradient in general with declining biomass to the eastern shelf towards the Tsushima Current Water. Size-fractionated biomass showed that the 1.0~2.0 mm size group, mostly copepods, dominated zooplankton biomass, comprising 38 to 48% of total biomass. Smaller zooplankton (0.2~1.0 mm) biomass, consisting mainly of Paracalanus spp, a particle eating herbivorous copepod, was positively related to chlorophyll-a concentration, but no relationship was established for larger zooplankton (1.0~5.0 mm). Spatially-averaged mean total zooplankton biomass was also highly related to chlorophyll-a concentration. These result suggest that the long-term trend of zooplankton biomass increase in this region is partly accounted for by the increases of phytoplankton biomass and productivity underway in the region. However, the underlying mechanisms of how sea surface warming in the study area leads to increased phytoplankton biomass and productivity remains unclear.

Nitrogen Storage Potential in Aboveground Biomass of Three-year-old Poplar Clones in a Riparian Area (하천연변에 식재된 3년생 포플러 클론의 지상부 biomass의 질소 저장능력 추정추정)

  • Yeo, Jin-Kie;Lee, Won-Woo;Koo, Yeong-Bon;Woo, Kwan-Soo;Byun, Jae-Kyung
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • We estimated the biomass productivity and the storage potential of nitrogen, the major contributor of non-point source pollution, with four three-year-old four poplar clones in a riparian woody buffer established in the Anseong River in Anseong, Korea. Stem of Populus alba ${\times}$ P. glandulosa clone 72-31 and Populus deltoides ${\times}$ P. nigra clone Dorskamp showed the highest percentage of aboveground biomass components, followed by branch and leaf. Nitrogen content in aboveground biomass components of two poplar clones was the highest in leaf and the lowest in stem. Nitrogen content in leaf and branch of clone 72-31 was higher than that of clone Dorskamp, while it in stem was lower. Populus deltoides clone Ay48 showed the highest above-ground biomass productivity, which was estimated as $37.5ton\;ha^{-1}$ at age 3. However, clone 72-31 was the lowest in above-ground biomass productivity. Nitrogen storage potential in aboveground biomass of 3-year-old poplar clones was high in order of aboveground biomass. Clone Ay48 showed the highest nitrogen storage potential in aboveground biomass, which was estimated as $218.3kg\;ha^{-1}$ at age 3.

Effect of N/P Ratio on the Biomass Productivity and Nutrient Removal in the Wastewater using Botryococcus braunii (하수의 N/P 비가 Botryococcus braunii 증식과 영양염류제거에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.9
    • /
    • pp.609-613
    • /
    • 2014
  • The aim of this study was effect of N/P ratio on the nutrient removal in the wastewater using microalgae. For this experiment, 1 to 70 various N/P ratio was prepared and used microalgae as Botryococcus braunii in the wastewater. The results of this study were that 1 to 30 of N/P ratio was need for biomass productivity in the wastewater. TN removal was measured 82% for 1 to 30 N/P ratio and 73-78% for 31 to 70 N/P ratio. TP removal in 1 to 20 N/P ratio was determined up to 80%, but over 21 N/P ratio was decreased significantly and was not changed around 22% of TP removal in the 50 to 70 N/P ratio. Therefore, the optimum N/P ratio in the wastewater was 1 to 30 for biomass productivity, TN and TP removal. The correlation ($R^2$) of TP removal and biomass productivity was 0.9126. However, the relationship between TN removal and biomass productivity was not found. The P content in the wastewater was influenced more than that of TN content.

Growth and nutrient removal of Chlorella vulgaris in ammonia-reduced raw and anaerobically-digested piggery wastewaters

  • Kwon, Gyutae;Nam, Ji-Hyun;Kim, Dong-Min;Song, Chulwoo;Jahng, Deokjin
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • This study was aimed to investigate the possibility of using raw and anaerobically-digested piggery wastewater as culture media for a green microalga Chlorella vulgaris (C. vulgaris). Due to high concentration of ammonia and dark color, the microalga did not grow well in this wastewater. In order to solve this problem, air stripping and NaOCl-treatment were applied to reduce the concentration of NH3-N and the color intensity from the wastewater. Algal growth was monitored in terms of specific growth rate, biomass productivity, and nutrient removal efficiency. As a result, C. vulgaris grew without any sign of inhibition in air-stripped and 10-folds diluted anaerobically-digested piggery wastewater with enhanced biomass productivity of 0.57 g/L·d and nutrient removal of 98.7-99.8% for NH3-N and 41.0-62.5% for total phosphorus. However, NaOCl-treatment showed no significant effect on growth of C. vulgaris, although dark color was removed greatly. Interestingly, despite that the soluble organic concentration after air stripping was still high, the biomass productivity was 4.4 times higher than BG-11. Moreover, air stripping was identically effective for raw piggery wastewater as for anaerobic digestate. Therefore, it was concluded that air stripping was a very effective method for culturing microalgae and removing nutrients from raw and anaerobically-digested piggery wastewaters.