• Title/Summary/Keyword: Biomass pretreatment

Search Result 167, Processing Time 0.032 seconds

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

A Research Trend of Pretreatment in Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review (목질계 바이오에탄올 생산의 전처리 기술에 관한 연구동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.274-286
    • /
    • 2009
  • Lignocellulosic biomass is the most abundant raw material for bioconversion in many country. However the high costs for pretreatment and enzymatic hydrolysis currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into intermediates that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of pretreatment with lignocellulosic biomass in bioethanol production process.

Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility

  • Sharma, A.;Ghosh, A.;Pandey, R.A.;Mudliar, S.N.
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.216-223
    • /
    • 2015
  • The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at $195^{\circ}C$, 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to $10.4gL^{-1}$.

Enhancement of Enzymatic Hydrolysis of Cellulosic Biomass by Organosolv Pretreatment Using High Concentration of Ethanol (효소당화 효율 향상을 위한 섬유소계 바이오매스의 고농도 유기용매 전처리 공정)

  • Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.54-59
    • /
    • 2021
  • The pretreatment of cellulosic biomass is essentially needed because it has more lignin compared with a starch biomass. Ethanol as an organosolv for pretreatment can easily separate some components which can inhibit enzymatic hydrolysis and be re-usuable by distillation. The flow-through process have some strength, separating components continuously, development for scale up. In this research, two-kinds (wheat straw, miscanthus) of biomass was pretreated for development of enzymatic hydrolysis by adoption of pretreatment process of corn stover.

Bioethanol Production Using Lignocellulosic Biomass - review Part I. Pretreatments of biomass for generating ethanol

  • Sheikh, Mominul Islam;Kim, Chul-Hwan;Yesmin, Shabina;Lee, Ji-Yong;Kim, Gyeong-Chul;Ahn, Byeong-Il;Kim, Sung-Ho;Park, Hyeon-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.1-14
    • /
    • 2010
  • Bio-ethanol is a promising alternative energy source for reducing both consumption of crude oil and environmental pollution from renewable resources like lignocellulosic biomass such as wood, forest residuals, agricultural leftovers and urban wastes. Based on current technologies, the cost of ethanol production from lignocellulosic materials is relatively high, and the main challenges are the low yield and high cost of the hydrolysis process. Development of more efficient pretreatment technology (physical, chemical, physico-chemical, and biological pretreatment), integration of several microbiological conversions into fewer reactors, and increasing ethanol production capacity may decrease specific investment for ethanol producing plants. The purpose of pretreatment of lignocellulosic material is to improve the accessible surface area of cellulose for hydrolytic enzymes and enhance the conversion of cellulose to glucose and finally high yield ethanol production which is economic and environmental friendly.

Conversion of Woody Biomass for Utilization(II) - Preparation of Dissolving Pulp by Solvolysis from Woody Biomass - (목질계 Biomass의 변환 이용(II) - 목질계 바이오매스로부터 solvolysis법에 의한 용해용 펄프의 제조 -)

  • Yang, Jae-Kyung;Lim, Bu-Kug;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.45-50
    • /
    • 1997
  • This research was studied for dissolving pulp preparation as the raw material of viscose rayon from woody biomass by solvolysis pretreatment. In the change of pulp characteristic after solvolysis pretreatment, the following results were obtained. In the case of solvolysis pretreatment, we have obtained pulp that high purity cellulose, and degree of polymerization was inclined to decrease less than 440 on the phosphoric acid as catalyst. Comparing phosphoric acid and formic acid as catalyst in the solvolysis pretreatment, using on formic acid catalyst is superior to phosphoric acid catalyst for making dissolving pulp.

  • PDF

Physico-Chemical Pretreatment of Herbaceous Biomass by Organosolv Flow-Through Process (초본계 바이오매스의 물리-화학적 유기용매 전처리 공정)

  • Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.441-446
    • /
    • 2018
  • Herbaceous biomass is easier at chemical conversion than woody biomass. However, pretreatment must be needed because it has substantially lignin. Organsolv is good at fractionation of enzymatic hydrolysis inhibitors such as lignin and it is reusable by distillation when it has low molecular weight. Flow-through process can prevent recondensation of fractionated components and easily separate liquid from the biomass. In this study, the pretreatment was performed for decreasing additional process by using ethanol without catalyst because this process has a lot of operation expense at bio-alcohol production process. Flow-through pretreatment was performed at $150{\sim}190^{\circ}C$ with 30~99.5 wt% ethanol during 20~60 minutes. Also the phsyco-chemical pretreatment was performed for decreasing reaction time and temperature.

Ionic Liquid Pretreatment of Lignocellulosic Biomass

  • Han, Song-Yi;Park, Chan-Woo;Kwon, Gu-Joong;Kim, Nam-Hun;Kim, Jin-Chul;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.69-77
    • /
    • 2020
  • Lignocellulosic biomass has recalcitrant characteristics against chemical and biological conversion due to its structural heterogeneity and complexity. The pretreatment process to overcome these recalcitrant properties is essential, especially for the biochemical conversion of lignocellulosic biomass. In recent years, pretreatment methods using ionic liquids (ILs) and deep eutectic solvents (DESs) as the green solvent has attracted great attention because of their advantages such as easy recovery, chemical stability, temperature stability, nonflammability, low vapor pressure, and wide liquids range. However, there are some limitations such as high viscosity, poor economical feasibility, etc. to be solved for practical use. This paper reviewed the research activities on the pretreatment effect of various ILs including DESs and their co-solvents with organic solvents on the enzymatic saccharification efficiency of lignocellulosic biomass and the nanocellulose preparation from the pretreated products.

Effects of Dilute Acid Pretreatment on Enzyme Adsorption and Surface Morphology of Liriodendron tulipifera

  • Min, Byeong-Cheol;Koo, Bon-Wook;Gwak, Ki-Seob;Yeo, Hwan-Myeong;Choi, Joon-Weon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.187-195
    • /
    • 2011
  • In this study, dilute acid pretreatment of $Liriodendron$ $tulipifera$ was performed for enzymatic hydrolysis. As the pretreatment temperature was increased, enzymatic hydrolysis and enzyme adsorption yield also increased. The highest enzymatic hydrolysis yield was 57% (g/g) and enzyme adsorption was 44% (g/g). Enzymatic hydrolysis yield was determined with weight loss of pretreated biomass by enzyme, and enzyme adsorption was a percentage of enzyme weight attaching on pretreated biomass compared with input enzyme weight. When $L.$ $tulipifera$ was pretreated with 1% sulfuric acid at $160^{\circ}C$ for 5 min., hemicellulose was significantly removed in pretreatment, but the lignin contents were constant. Other changes in surface morphology were detected on biomass pretreated at $160^{\circ}C$ by a field emission scanning electron microscope (FESEM). A large number of spherical shapes known as lignin droplets were observed over the entire biomass surface after pretreatment. Hemicellulose removal and morphological changes improved enzyme accessibility to cellulose by increasing cellulose exposure to enzyme. It is thus evidence that enzyme adsorption is a significant factor to understand pretreatment effectiveness.

The Effect of Enzymatic Hydrolysis by Ethanol Organosolv Pretreatment of Corn Stover (에탄올 유기용매 전처리를 이용한 옥수수대의 효소당화)

  • Park, Jang Han;Kim, Tae Huyn;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.448-452
    • /
    • 2016
  • This study is for the effective pretreatment and saccharification of lignocellulosic biomass for a transport fuel receiving attention. The waste water during the pretreatment of biomass is major factor for determining the price of biofuel. Therefore, we conducted high concentration of organosolv pretreatment for decline waste water and reusing the solvent. We confirmed effect of organosolv pretreatment by components analysis and enzymatic hydrolysis of pretreated biomass. The corn stover was used for and 99.5 wt% of ethanol as a organosolv pretreatment. The pretreatment condition was varied 130 to $190^{\circ}C$ during the designated reaction times and the effect of pretreatment was investigated by enzymatic hydrolysis. The highest glucose conversion was more than 68% the pretreatment condition of $190^{\circ}C$ for 70 min or more. The solid remaining was more than 70% and almost of cellulose and hemicellulose were survived.