• Title/Summary/Keyword: Biomass loading

Search Result 118, Processing Time 0.028 seconds

A Study on an Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(II) -Effect of Organic Shock Loading Rate on Biomass Characteristics- (산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(II) -유기물 충격 부하가 미생물 성장에 미치는 영향-)

  • 안갑환;박영식;최윤찬;김동석;송승구
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.325-330
    • /
    • 1993
  • A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 cm/sec and temperature, 22$\pm$$1^{\circ}C$, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/m$^3$ㆍday, respectively. Within the F/M ratio ranged 0.4 to 2.0 kgCOD/kgVSSㆍday, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 kgCOD/kgVSSㆍday, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSSㆍday. The average biomass concentrations were 7800, 14950 and 27532 mg/l on the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/$\textrm{m}^3$ㆍday, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.

  • PDF

A Study of Attached Biomass Back Washing in Fixed Film System (고정 생물막공법에서 부착미생물의 역세에 관한 연구)

  • 이창근;김정숙
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.219-224
    • /
    • 1997
  • The cloging phenomenon in the fixed film reactor Is shown when biomass growth Is excessive for long operating time. In addition, effluent water Quality gets worse because of detachment of biomass. In this study, we conducted air-backwashing to sustain biomass In reactor to complement these defects. The results of experimental are showed In the following conclusion. The detachment rate was 19.5 - 38.0% when the organic loading rate was 0.40 - 1.32 kg COD/$m^3$/day, the k - backwashing Intensity was 2 L/min(6.7 $m^3$/$m^2$/hrl and the backwashing time was 15 - 19 seconds. And the detachment rate was 32.2 - 58.6 % when the organic loading rate was 1.37 - 2.27 kg COD/$m^2$/day, the backwashing time was 1 - 12 minutes. As orgnic loading rate and backwashing time ale Increased, detachment of fixed biomass Is Increased. The detachment equation with detachment rate(DR, %), backwashing time(BWT, min), fixed biomass concentration(FB. mg/L), and organic leading rate(OLR, kg COD/ms/day) through multiple linear regession was given by the following equation: DR : 17.964 $BWT^{0.1407} FB^{0.0597} OLR^{0.1946}$

  • PDF

Estimation of Nutrient Loading and Trophic States in a Coastal Estuary

  • Bach, Quang-Dung;Shin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.337-346
    • /
    • 2011
  • We investigated nutrient loading and trophic states in a coastal estuarine system in the Asan estuary by assessing phytoplankton biomass and using the trophic index (TRIX). The monthly and yearly nutrient loading (TN, TP) from freshwater discharge from the Asan and Sapgyo reservoirs into the estuary were estimated and analyzed with related factors. Monitoring data (physio-chemical and biological variables) collected at five estuary stations were used to assess trophic states. Descriptive statistics of total phytoplankton cells, chl a concentrations and primary productivity were also used to assess seasonal trophic status. N loading from freshwater ranged $1.0{\sim}1.3{\times}10^4$ ton yearly. The yearly P loading ranged between 350 and 400 ton during 2004~2006, increasing to 570 ton in 2007. Regression results suggest that DIN and DSi were correlated with freshwater discharge at the upper region. Based on phytoplankton biomass and total cell abundance, the trophic state of the estuary was found to be eutrophic during spring due to phytoplankton bloom. Primary productivity level was remarkably high, especially in summer coinciding with high nutrient loading. Pheopigments increased during warm seasons, i.e. summer and fall. Trophic index results indicate that the trophic state varied between mesotrophic and eutrophic in the estuary water body, especially in the upper region. The results suggest that phytoplankton production was regulated by nutrient loading from freshwater whereas biomass was affected by other properties than nutrient loading in the Asan Estuary ecosystem.

Sewage Treatment using Aerated Submerged Biological Filter(ASBF) (호기성 침지형 생물막 여과장치를 이용한 오수처리)

  • Park, Jong-Woong;Song, Ju-seok
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.523-532
    • /
    • 2000
  • The purpose of this study was to investigate the effects of the hydraulic retention time (HRT) and organic loading rate (OLR) on microbial characteristics and treatment efficiency in sewage treatment using aerated submerged biological filter (ASBF) reactor. This reactor combines biodegradation of organic substrates by fixed biomass with a physical separation of biomass by filtration in a single reactor. Both simulated wastewater and domestic wastewater were used as feed solutions. The experimental conditions were a temperature of 17 to $27^{\circ}C$, a hydraulic retention time of 1 to 9hr, an organic loading rate of 0.47 to $3.84kg\;BOD/m^3{\cdot}day$ in ASBF reactor. This equipment could obtain a stable effluent quality in spite of high variation of influent loading rate. Total biomass concentration. biofilm thickness and biofilm mass increased an exponential function according to the increasing OLR. The relationships between water content and biofilm density were in inverse proportion. The percentage of backwash water to influent flow was almost 9%. The separation efficiency of biomass was the percentage of 91 to 92 in ASBF reactor. The sludge production rates in feed solutions of simulated wastewater and domestic wastewater were 0.14~0.26 kg VSS/kg BODrem, 0.43~0.48 kg VSS/kg BODrem, respectively.

  • PDF

Effects of Biomass Concentration and Sludge Loading Rate on Bioactivity and Membrane Fouling in a Submerged Membrane Bioreactor System (침지형 분리막 생물반응기에서 미생물 농도와 슬러지 부하에 따른 미생물 활성 변화와 막오염 특성 연구)

  • Tak Tae-Moon;Bae Tae-Hyun;Jang Gyoung-Gug
    • Membrane Journal
    • /
    • v.14 no.4
    • /
    • pp.289-297
    • /
    • 2004
  • In this study, membranes were coupled to a sequencing batch reactor for simultaneous removal of organic matter and nitrogen, and the influences of MLSS (mixed liquor suspended solid) concentration and the sludge loading rate on membrane fouling and bioactivity were investigated. The amount of membrane fouling slightly increased with MLSS concentration at both non-aeration and aeration conditions, but effect of MLSS concentration was more significant at aeration condition. Although the effect of MLSS concentration on membrane fouling was found to be insignificant at low concentration level, extremely low sludge loading, which were generated by the maintenance of large amount of biomass in the reactor, caused severe membrane fouling, and air scouring effect decreased significantly in this condition. Specific bioactivity was constantly reduced as sludge loading rate decreased. In spite of high MLSS concentration over 17,000 mg/L, the activity of the reactor decreased at extremely low sludge loading rate presumably due to the lower oxygen transfer and the competition of biomass to deficient substrate.

Predicting Methane Production on Anaerobic Digestion to Crop Residues and Biomass Loading Rates (혐기 소화 시 식물체 잔사 및 투입량에 따른 메탄 생산량 예측)

  • Shin, JoungDu;Hong, Seung-Gil;Park, SangWon;Kim, HyunWook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.75-82
    • /
    • 2016
  • Objective of this experiment was to predict the potential methane production with crop residues at different loading rates. Anaerobic digestion of barley and rapeseed straw substrates for biogas production was performed in Duran bottles at various biomass loading rates with crop residues. Through kinetic model of surface methodology, the methane production was fitted to a Gompertz equation. For the biogas production at mesophilic digestion with crop residues, it was observed that maximum yield was 37.2 and 28.0 mL/g at 6.8 and 7.5 days after digestion with 1% biomass loading rates of barley and rapeseed straws, respectively. For the methane content of mesophilic digestion, there were highest at 61.7% after 5.5 days and 75.0% after 3.4 days of digestion with barley and rapeseed straw on both 5% biomass loading rates, respectively. The maximum methane production potentials were 159.59 mL/g for 1% barley straw and 156.62 mL/g for 3% rapeseed straw at mesophilic digestion. Overall, it would be strongly recommended that biomass loading rate was an optimum rate at mesophilic digestion for using 1% barley and 3% rapeseed straws for feed stocks.

A study on the treatment of highly-emulsified oily wastewater by an inverse fluidized-bed biofilm reactor (역 유동층 생물막 반응기를 이용한 유분함유폐수 처리에 관한 연구)

  • 최윤찬;나영수
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.361-367
    • /
    • 1996
  • An inverse fluidized-bed biofilm reactor (IFBBR) was used for the treatment of highly-emulsified oily wastewater. When the concentration of biomass which was cultivated in the synthetic wastewater reached to 6000 mg/1, the oily wastewater was employed to the reactor with a input COD concentration range of 50 mg/1 to 1900 mg/l. Virtually the IFBBR showed a high stability during the long operation period although soma fluctuation was observed. The COD removal efficiency was maintained over 9% under the condition that organic loading rate should be controlled under the value of 1.5 kgCOD/$m^3$/day, and F/M ratio is 1.0 kgCOD/kgVSS/day at $22{\circ}C$ and HRT of 12 hrs. As increasing organic loading rates, the biomass concentration was decreased steadily with decreasing of biofilm dry density rather than biofilm thickness. Based on the experimental jesuits, it was suggested that the decrease in biofilm dry density was caused by a loss of biomass inside the biofilm.

  • PDF

Performance of a submerged membrane bioreactor for wastewater mimicking fish meal processing effluent

  • Lopez, Guadalupe;Almendariz, Francisco J.;Heran, Marc;Lesage, Geoffroy;Perez, Sergio
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.263-271
    • /
    • 2018
  • The objective of this work was to analyze organic matter removal, nitrification, biomass growth and membrane fouling in a submerged flat-sheet membrane bioreactor, fed with synthetic wastewater, of similar composition to the effluents generated in a fish meal industry. After biomass acclimatization with saline conditions of 12 gNaCl/L and COD/N ratio of 15 in the bioreactor, results showed that the organic matter removal was higher than 90%, for all organic loading rates (0.8, 1, 1.33 and $2gCOD/L{\cdot}d$) and nitrogen loading rates (0.053, 0.067, 0.089 and $0.133gN/L{\cdot}d$) tested during the study. However, nitrification was only carried out with the lowest OLR ($0.8gCOD/L{\cdot}d$) and NLR ($0.053gN/L{\cdot}d$). An excessive concentration of organic matter in the wastewater appears as a limiting factor to this process' operating conditions, where nitrification values of 65% were reached, including nitrogen assimilation to produce biomass. The analysis of membrane fouling showed that the bio-cake formation at the membrane surface is the most impacting mechanism responsible of this phenomenon and it was demonstrated that organic and nitrogen loading rates variations affected membrane fouling rate.

Removal Characteristics of Volatile Organic Compounds in Biofilters and Stoichiometric Analysis of Biological Reaction by Carbon Mass Balance (바이오필터의 휘발성유기화합물 제거특성 및 탄소물질수지를 이용한 생물반응의 양론적 해석)

  • Kim, Dae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.747-753
    • /
    • 2010
  • This study was performed to investigate the removal characteristics of volatile organic compounds (VOCs) in the gasphase biofilters, and to propose a stoichiometric analysis approach to characterize biological reaction through carbon mass balance. The VOCs studied were toluene, styrene, methyl ethyl ketone (MEK), and methyl isobutyl ketone (MIBK) as a single substrate for each biofilter. The critical loading rate was determined to be $46.9\;g/m^3{\cdot}hr$, $25.8\;g/m^3{\cdot}hr$, $96.3\;g/m^3{\cdot}hr$, and $66.5\;g/m^3{\cdot}hr$ for toluene, styrene, MEK, and MIBK, respectively. The obtained results indicated that the critical loading rate was well correlated the octanol-water partition coefficient. In the analysis of carbon mass balance, carbon recovery to $CO_2$ became relatively lower as substrate loadings increased, but higher for carbon recovery to biomass. Stoichiometric analysis revealed that biomass yield increased as substrate loadings increased, and its coefficient (g biomass/g substrate) varied from 0.31 to 0.57 for toluene, 0.29 to 0.57 for styrene, 0.08 to 0.56 for MEK, and 0.14 to 0.53 for MIBK.

Effect of Aeration Intensity on the Treatment Efficiency in Submerged Biofilm Process (침지형 생물막공법에 있어서 포기강도가 처리효율에 미치는 영향)

  • 박종웅
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.89-96
    • /
    • 1989
  • An aerated submerged biofilm reactor is the reactor in which influent organic substrates are aerobically oxidized by suspended biomass and attached biomass of biofilm grown on the surface of submerged media. The objective of this study was to investigate the effect of aeration intensity on microbial characteristics and treatment efficiency in submerged biofilm process. In the organic loading rate (4.3kg BOD/$m^{3} \cdot day$), biofilm thickness (420-780$\mu$m) and attached biomass(1.79-2.94mg/cm$^{2}$) increased as the aeration intensity increased (2-8m$^{3}$ air/$m^{2} \cdot hr$), but biofilm density decreased (42.25-37.69mg/cm$^{3}$). The minimum aeration intensity for prevention of deposited biomass was 2m$^{3}$ air/$m^{2} \cdot hr$. The minimum dissolved oxygen of 2.5mg/l had to be maintained for improved efficiency.

  • PDF