Ji, Eun-Sun;Cheon, Mi-Hee;Lee, Ju-Yeon;Yoo, Jong-Shin;Jung, Hyun-Jin;Kim, Jin-Young
Mass Spectrometry Letters
/
v.1
no.1
/
pp.21-24
/
2010
The development of clinical biomarkers involves discovery, verification, and validation. Recently, multiple reaction monitoring (MRM) coupled with stable isotope dilution mass spectrometry (IDMS) has shown considerable promise for the direct quantification of proteins in clinical samples. In particular, multiple biomarkers have been tracked in a single experiment using MRM-based MS approaches combined with liquid chromatography. We report here a highly reproducible, quantitative, and dynamic MRM system for validating multi-biomarker proteins using Nanoflow HPLC-Microfluidics Chip/Triple-Quadrupole MS. In this system, transitions were acquired only during the retention window of each eluting peptide. Transitions with the highest MRM-MS intensities for the five target peptides from colon cancer biomarker candidates were automatically selected using Optimizer software. Relative to the corresponding non-dynamic system, the dynamic MRM provided significantly improved coefficients of variation in experiments with large numbers of transitions. Linear responses were obtained with concentrations ranging from fmol to pmol for five target peptides.
The misuse of anabolic hormones or illegal drugs is a ubiquitous problem in animal husbandry and in food safety. The ban on growth promotants in food producing animals in the European Union is well controlled. However, application regimens that are difficult to detect persist, including newly designed anabolic drugs and complex hormone cocktails. Therefore identification of molecular endogenous biomarkers which are based on the physiological response after the illicit treatment has become a focus of detection methods. The analysis of the 'transcriptome' has been shown to have promise to discover the misuse of anabolic drugs, by indirect detection of their pharmacological action in organs or selected tissues. Various studies have measured gene expression changes after illegal drug or hormone application. So-called transcriptomic biomarkers were quantified at the mRNA and/or microRNA level by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) technology or by more modern 'omics' and high throughput technologies including RNA-sequencing (RNA-Seq). With the addition of advanced bioinformatical approaches such as hierarchical clustering analysis or dynamic principal components analysis, a valid 'biomarker signature' can be established to discriminate between treated and untreated individuals. It has been shown in numerous animal and cell culture studies, that identification of treated animals is possible via our transcriptional biomarker approach. The high throughput sequencing approach is also capable of discovering new biomarker candidates and, in combination with quantitative RT-qPCR, validation and confirmation of biomarkers has been possible. These results from animal production and food safety studies demonstrate that analysis of the transcriptome has high potential as a new screening method using transcriptional 'biomarker signatures' based on the physiological response triggered by illegal substances.
Cheon, Ji Hyun;Kim, Sun Young;Son, Ji Yeon;Kang, Ye Rim;An, Ji Hye;Kwon, Ji Hoon;Song, Ho Sub;Moon, Aree;Lee, Byung Mu;Kim, Hyung Sik
Toxicological Research
/
v.32
no.1
/
pp.47-56
/
2016
The identification of biomarkers for the early detection of acute kidney injury (AKI) is clinically important. Acute kidney injury (AKI) in critically ill patients is closely associated with increased morbidity and mortality. Conventional biomarkers, such as serum creatinine (SCr) and blood urea nitrogen (BUN), are frequently used to diagnose AKI. However, these biomarkers increase only after significant structural damage has occurred. Recent efforts have focused on identification and validation of new noninvasive biomarkers for the early detection of AKI, prior to extensive structural damage. Furthermore, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Our previous study suggested that pyruvate kinase M2 (PKM2), which is excreted in the urine, is a sensitive biomarker for nephrotoxicity. To appropriately and optimally utilize PKM2 as a biomarker for AKI requires its complete characterization. This review highlights the major studies that have addressed the diagnostic and prognostic predictive power of biomarkers for AKI and assesses the potential usage of PKM2 as an early biomarker for AKI. We summarize the current state of knowledge regarding the role of biomarkers and the molecular and cellular mechanisms of AKI. This review will elucidate the biological basis of specific biomarkers that will contribute to improving the early detection and diagnosis of AKI.
Park, Jong-Lyul;Kim, Mirang;Song, Kyu-Sang;Kim, Seon-Young;Kim, Yong Sung
Genomics & Informatics
/
v.13
no.3
/
pp.70-75
/
2015
MicroRNAs (miRNAs) have been demonstrated to play an important role in carcinogenesis. Previous studies revealed that miRNAs are present in human plasma in a remarkably stable form that is protected from endogenous RNase activity. In this study, we measured the plasma expression levels of three miRNAs (miR-21, miR-27a, and miR-155) to investigate the usefulness of miRNAs for gastric cancer detection. We initially examined plasma miRNA expression levels in a screening cohort consisting of 15 patients with gastric cancer and 15 healthy controls from Korean population, using TaqMan quantitative real-time polymerase chain reaction. We observed that the expression level of miR-27a was significantly higher in patients with gastric cancer than in healthy controls, whereas the miR-21 and miR-155a expression levels were not significantly higher in the patients with gastric cancer. Therefore, we further validated the miR-27a expression level in 73 paired gastric cancer tissues and in a validation plasma cohort from 35 patients with gastric cancer and 35 healthy controls. In both the gastric cancer tissues and the validation plasma cohort, the miR-27a expression levels were significantly higher in patients with gastric cancer. Receiver-operator characteristic (ROC) analysis of the validation cohort, revealed an area under the ROC curve value of 0.70 with 75% sensitivity and 56% specificity in discriminating gastric cancer. Thus, the miR-27a expression level in plasma could be a useful biomarker for the diagnosis and/or prognosis of gastric cancer.
Kim, Ki-Yeol;Ki, Dong-Hyuk;Chung, Hyun-Cheol;Rha, Sun-Young
Genomics & Informatics
/
v.6
no.3
/
pp.136-141
/
2008
A large number of studies have been performed to identify biomarkers that will allow efficient detection and determination of the precise status of a patient’s disease. The use of microarrays to assess biomarker status is expected to improve prediction accuracies, because a whole-genome approach is used. Despite their potential, however, patient samples can differ with respect to biomarker status when analyzed on different platforms, making it more difficult to make accurate predictions, because bias may exist between any two different experimental conditions. Because of this difficulty in experimental standardization of microarray data, it is currently difficult to utilize microarray-based gene sets in the clinic. To address this problem, we propose a method that predicts disease status using gene expression data that are transformed by their ranks, a concept that is easily applied to two datasets that are obtained using different experimental platforms. NCI and colon cancer datasets, which were assessed using both Affymetrix and cDNA microarray platforms, were used for method validation. Our results demonstrate that the proposed method is able to achieve good predictive performance for datasets that are obtained under different experimental conditions.
Deep learning has been applied to various medical data. In particular, current deep learning models exhibit remarkable performance at specific tasks, sometimes offering higher accuracy than that of experts for discriminating specific diseases from medical images. The current status of deep learning applications to molecular imaging can be divided into a few subtypes in terms of their purposes: differential diagnostic classification, enhancement of image acquisition, and image-based quantification. As functional and pathophysiologic information is key to molecular imaging, this review will emphasize the need for accurate biomarker acquisition by deep learning in molecular imaging. Furthermore, this review addresses practical issues that include clinical validation, data distribution, labeling issues, and harmonization to achieve clinically feasible deep learning models. Eventually, deep learning will enhance the role of theranostics, which aims at precision targeting of pathophysiology by maximizing molecular imaging functional information.
Chang, Jae Won;Park, Ki Wan;Hong, So-Hye;Jung, Seung-Nam;Liu, Lihua;Kim, Jin Man;Oh, Taejeong;Koo, Bon Seok
Korean Journal of Head & Neck Oncology
/
v.33
no.1
/
pp.21-29
/
2017
Methylation of CpG islands in the promoter region of genes acts as a significant mechanism of epigenetic gene silencing in head and neck squamous cell carcinoma (HNSCC). DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable mark. In the present study, we assessed the genome-wide preliminary screening and were to identify novel methylation biomarker candidate in HNSCC. Genome-wide methylation analysis was performed on 10 HNSCC tumors using the Methylated DNA Isolation Assay (MeDIA) CpG island microarray. Validation was done using immunohistochemistry using tissue microarray of 135 independent HNSCC tumors. In addition, in vitro proliferation, migration/invasion assays, RT-PCR and immunoblotting were performed to elucidate molecular regulating mechanisms. Our preliminary validation using CpG microarray data set, immunohisto-chemistry for HNSCC tumor tissues and in vitro functional assays revealed that methylation of the Homeobox B5 (HOXB5) and H6 Family Homeobox 2 (HMX2) could be possible novel methylation biomarkers in HNSCC.
KIPS Transactions on Software and Data Engineering
/
v.3
no.10
/
pp.421-428
/
2014
Like Alzheimer's disease, Parkinson's Disease(PD) is one of the most common neurodegenerative brain disorders. PD results from the deterioration of dopaminergic neurons in the brain region called the substantia nigra. Currently there is no cure for PD, but diagnosing in its early stage is important to provide treatments for relieving the symptoms and maintaining quality of life. Unlike many diagnosis methods of PD which use a single biomarker, we developed a diagnosis method that uses both biochemical biomarkers and imaging biomarkers. Our method uses ${\alpha}$-synuclein protein levels in the cerebrospinal fluid and diffusion tensor images(DTI). It achieved an accuracy over 91.3% in the 10-fold cross validation, and the best accuracy of 72% in an independent testing, which suggests a possibility for early detection of PD. We also analyzed the characteristics of the brain fiber pathways of Parkinson's disease patients and normal elderly people.
Purpose: The aim of this study was to develop a bioinformatics software and to test it in serum samples of papillary thyroid cancer using mass spectrometry (SELDI-TOF-MS). Materials and Methods: Development of 'Protein analysis' software performing decision tree analysis was done by customizing C4.5. Sixty-one serum samples from 27 papillary thyroid cancer, 17 autoimmune thyroiditis, 17 controls were applied to 2 types of protein chips, CM10 (weak cation exchange) and IMAC3 (metal binding - Cu). Mass spectrometry was performed to reveal the protein expression profiles. Decision trees were generated using 'Protein analysis' software, and automatically detected biomarker candidates. Validation analysis was performed for CM10 chip by random sampling. Results: Decision tree software, which can perform training and validation from profiling data, was developed. For CM10 and IMAC3 chips, 23 of 113 and 8 of 41 protein peaks were significantly different among 3 groups (p<0.05), respectively. Decision tree correctly classified 3 groups with an error rate of 3.3% for CM10 and 2.0% for IMAC3, and 4 and 7 biomarker candidates were detected respectively. In 2 group comparisons, all cancer samples were correctly discriminated from non-cancer samples (error rate = 0%) for CM10 by single node and for IMAC3 by multiple nodes. Validation results from 5 test sets revealed SELDI-TOF-MS and decision tree correctly differentiated cancers from non-cancers (54/55, 98%), while predictability was moderate in 3 group classification (36/55, 65%). Conclusion: Our in-house software was able to successfully build decision trees and detect biomarker candidates, therefore it could be useful for biomarker discovery and clinical follow up of papillary thyroid cancer.
Park, Hyoung-Min;Kim, HuiSu;Kim, Dong Wook;Yoon, Jong-Hyuk;Kim, Byung-Gyu;Cho, Je-Yoel
BMB Reports
/
v.53
no.12
/
pp.664-669
/
2020
Breast cancer is one of the most frequently diagnosed cancers. Although biomarkers are continuously being discovered, few specific markers, rather than classification markers, representing the aggressiveness and invasiveness of breast cancer are known. In this study, we used samples from canine mammary tumors in a comparative approach. We subjected 36 fractions of both canine normal and mammary tumor plasmas to high-performance quantitative proteomics analysis. Among the identified proteins, LCAT was selectively expressed in mixed tumor samples. With further MRM and Western blot validation, we discovered that the LCAT protein is an indicator of aggressive mammary tumors, an advanced stage of cancer, possibly highly metastatic. Interestingly, we also found that LCAT is overexpressed in high-grade and lymph-node-positive breast cancer in silico data. We also demonstrated that LCAT is highly expressed in the sera of advanced-stage human breast cancers within the same classification. In conclusion, we identified a possible common plasma protein biomarker, LCAT, that is highly expressed in aggressive human breast cancer and canine mammary tumor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.