Browse > Article
http://dx.doi.org/10.5487/TR.2016.32.1.047

Pyruvate Kinase M2: A Novel Biomarker for the Early Detection of Acute Kidney Injury  

Cheon, Ji Hyun (School of Pharmacy, Sungkyunkwan University)
Kim, Sun Young (College of Pharmacy, Duksung Women's University)
Son, Ji Yeon (School of Pharmacy, Sungkyunkwan University)
Kang, Ye Rim (School of Pharmacy, Sungkyunkwan University)
An, Ji Hye (School of Pharmacy, Sungkyunkwan University)
Kwon, Ji Hoon (School of Pharmacy, Sungkyunkwan University)
Song, Ho Sub (School of Pharmacy, Sungkyunkwan University)
Moon, Aree (College of Pharmacy, Duksung Women's University)
Lee, Byung Mu (School of Pharmacy, Sungkyunkwan University)
Kim, Hyung Sik (School of Pharmacy, Sungkyunkwan University)
Publication Information
Toxicological Research / v.32, no.1, 2016 , pp. 47-56 More about this Journal
Abstract
The identification of biomarkers for the early detection of acute kidney injury (AKI) is clinically important. Acute kidney injury (AKI) in critically ill patients is closely associated with increased morbidity and mortality. Conventional biomarkers, such as serum creatinine (SCr) and blood urea nitrogen (BUN), are frequently used to diagnose AKI. However, these biomarkers increase only after significant structural damage has occurred. Recent efforts have focused on identification and validation of new noninvasive biomarkers for the early detection of AKI, prior to extensive structural damage. Furthermore, AKI biomarkers can provide valuable insight into the molecular mechanisms of this complex and heterogeneous disease. Our previous study suggested that pyruvate kinase M2 (PKM2), which is excreted in the urine, is a sensitive biomarker for nephrotoxicity. To appropriately and optimally utilize PKM2 as a biomarker for AKI requires its complete characterization. This review highlights the major studies that have addressed the diagnostic and prognostic predictive power of biomarkers for AKI and assesses the potential usage of PKM2 as an early biomarker for AKI. We summarize the current state of knowledge regarding the role of biomarkers and the molecular and cellular mechanisms of AKI. This review will elucidate the biological basis of specific biomarkers that will contribute to improving the early detection and diagnosis of AKI.
Keywords
Acute kidney injury; Pyruvate kinase M2; Biomarker;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thadhani, R., Pascual, M. and Bonventre, J.V. (1996) Acute renal failure. N. Engl. J. Med., 334, 1448-1460.   DOI
2 Ympa, Y.P., Sakr, Y., Reinhart, K. and Vincent, J.L. (2005) Has mortality from acute renal failure decreased? A systematic review of the literature. Am. J. Med., 118, 827-832.   DOI
3 Espandiari, P., Zhang, J., Rosenzweig, B.A., Vaidya, V.S., Sun, J., Schnackenberg, L., Herman, E.H., Knapton, A., Bonventre, J.V., Beger, R.D., Thompson, K.L. and Hanig, J. (2008) The utility of a rodent model in detecting pediatric drug-induced nephrotoxicity. Toxicol. Sci., 99, 637-648.
4 Zhou, Y., Vaidya, V.S., Brown, R.P., Zhang, J., Rosenzweig, B.A., Thompson, K.L., Miller, T.J., Bonventre, J.V. and Goering, P.L. (2008) Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium. Toxicol. Sci., 101, 159-170.   DOI
5 Moran, S.M. and Myers, B.D. (1985) Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int., 27, 928-937.   DOI
6 Star, R.A. (1998) Treatment of acute renal failure, Kidney Int., 54, 1817-1831.   DOI
7 Mehta, R.L., Kellum, J.A., Shah, S.V., Molitoris, B.A., Ronco, C., Warnock, D.G. and Levin, A. (2007). Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care, 11, R3.   DOI
8 Holley, J.L. (2009) Clinical approach to the diagnosis of acute renal failure (5th edition). Primer on Kidney Diseases, Philadelphia. pp. 118-169.
9 Smith, M.C. (2004) Acute renal failure. (3rd edition). Clinical Decisions in Urology, Hamilton, Ontario, Canada.
10 Food and Drug Administration (FDA). (2009) Predictive safety testing consortium (PSTC). Available from: http://www.fda.gov/oc/initiatives/criticalpath/projectsummary/consortium.html. pp. 396-435.
11 Vaidya, V.S., Ferguson, M.A. and Bonventre, J.V. (2008) Biomarkers of acute kidney injury. Annu. Rev. Pharmacol. Toxicol., 48, 463-493.   DOI
12 Astor, B.C., Muth, B., Kaufman, D.B., Pirsch, J.D., Michael Hofmann, R. and Djamali, A. (2013) Serum $\beta$2-microglobulin at discharge predicts mortality and graft loss following kidney transplantation. Kidney Int., 84, 810-817.   DOI
13 Bernier, G.M. (1980) $\beta$2-Microglobulin: structure, function and significance. Vox Sang., 38, 323-327.   DOI
14 Vaidya, V.S., Ferguson, M.A. and Bonventre, J.V. (2008) Biomarkers of acute kidney injury. Annu. Rev. Pharmacol. Toxicol., 48, 463-493.   DOI
15 Caccamo, A.E., Scltriti, M., Caporali, A., D'Arca, D., Scorcioni, F., Astancolle, S., Mangiola, M. and Bettuzzi, S. (2004) Cell detachment and apoptosis induction of immortalizaed human prostate epithelial cells are associated with early accumulation of a 45 kDa nuclear isoform of clusterin. Biochem. J., 382, 157-168.   DOI
16 Rampoldi, L., Scolari, F., Amoroso, A., Ghiggeri, G. and Devuyst, O. (2011) The rediscovery of uromodulin (Tamm-Horsfall protein): from tubulointerstitial nephropathy to chronic kidney disease. Kidney Int., 80, 338-347.   DOI
17 Yan, Q., Sui, W., Wang, B., Zou, H., Zou, G. and Luo, H. (2012) Expression of MMP-2 and TIMP-1 in renal tissue of patients with chronic active antibody-mediated renal graft rejection. Diagn. Pathol., 7, 141.   DOI
18 Xie, Y., Sakatsume, M., Nishi, S., Narita, I., Arakawa, M. and Gejyo, F. (2001) Expression, roles, receptors, and regulation of osteopontin in the kidney. Kidney Int., 60, 1645-1657.   DOI
19 Dinarello, C.A., Novick, D., Rubinstein, M. and Lonnemann, G. (2003) Interleukin 18 and interleukin 18 binding protein: possible role in immunosuppression of chronic renal failure. Blood Purif., 21, 258-270.   DOI
20 Campbell, J.A., Corrigall, A.V., Guy, A. and Kirsch, R.E. (1991) Immunohistologic localization of alpha, mu, and pi class glutathione S-transferases in human tissues. Cancer, 67, 1608-1613.   DOI
21 Yu, Y., Jin, H., Holder, D., Ozer, J.S., Villarreal, S., Shughrue, P., Shi, S., Figueroa, D.J., Clouse, H., Su, M., Muniappa, N., Troth, S.P., Bailey, W., Seng, J., Aslamkhan, A.G., Thudium, D., Sistare, F.D. and Gerhold, D.L. (2010) Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat. Biotechnol., 28, 470-477.   DOI
22 Yang, J., Goetz, D., Li, J.Y., Wang, W., Mori, K., Setlik, D., Du, T., Erdjument-Bromage, H., Tempst, P., Strong, R. and Barasch, J. (2002) An iron delivery pathway mediated by a lipocalin. Mol. Cell, 10, 1045-1056.   DOI
23 Borregaard, N., Sehested, M., Nielsen, B.S., Sengelov, H. and Kjeldsen, L. (1995) Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation. Blood, 85, 812-817.
24 Mishra, J., Dent, C., Tarabishi, R., Mitsnefes, M.M., Ma, Q., Kelly, C., Ruff, S.M., Zahedi, K., Shao, M., Bean, J., Mori, K., Barasch, J. and Devarajan, P. (2005) Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet, 365, 1231-1238.   DOI
25 Won, A.J., Kim, S., Kim, Y.G., Kim, K.B., Choi, W.S., Kacew, S., Kim, K.S., Jung, J.H., Lee, B.M., Kim, S. and Kim, H.S. (2015) Discovery of urinary metabolomic biomarkers for early detection of acute kidney injury. Mol. Biosyst., 12, 133-144.
26 Moran, S.M. and Myers, B.D. (1985) Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int., 27, 928-937.   DOI
27 Bennett, M.R., Nehus, E., Haffner, C., Ma, Q. and Devarajan, P. (2015) Pediatric reference ranges for acute kidney injury biomarkers. Pediatr. Nephrol., 30, 677-685.   DOI
28 Bennett, M., Dent, C.L., Ma, Q., Dastrala, S., Grenier, F., Workman, R., Syed, H., Ali, S., Barasch, J. and Devarajan, P. (2008) Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin. J. Am. Soc. Nephrol., 3, 665-673.   DOI
29 Xin, C., Yulong, X., Yu, C., Changchun, C., Feng, Z. and Xinwei, M. (2008) Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery. Renal Failure, 30, 904-913.   DOI
30 Silberstein, J.L., Sprenkle, P.C., Su, D., Power, N.E., Tarin, T.V., Ezell, P., Sjoberg, D.D., Feifer, A., Fleisher, M., Russo, P. and Touijer, K.A. (2013) Neutrophil gelatinase-associated lipocalin (NGAL) levels in response to unilateral renal ischaemia in a novel pilot two-kidney porcine model. BJU Int., 112, 517-525.   DOI
31 Sprenkle, P.C., Wren, J., Maschino, A.C., Feifer, A., Power, N., Ghoneim, T., Sternberg, I., Fleisher, M. and Russo, P. (2013) Urine neutrophil gelatinase-associated lipocalin as a marker of acute kidney injury after kidney surgery. J. Urol., 190, 159-164.   DOI
32 van Timmeren, M.M., van den Heuvel, M.C., Bailly, V., Bakker, S.J., van Goor, H. and Stegeman, C.A. (2007) Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J. Pathol., 212, 209-217.   DOI
33 Zekey, F., Senkul, T., Ates, F., Soydan, H., Yilmaz, O. and Baykal, K. (2012) Evaluation of the impact of shock wave lithotripsy on kidneys using a new marker: how do neutrophil gelatinese-associated lypocalin values change after shock wave lithotripsy?. Urology, 80, 267-272.   DOI
34 Ichimura, T., Bonventre, J.V., Bailly, V., Wei, H., Hession, C.A., Cate, R.L. and Sanicola, M. (1998) Kidney Injury Molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem., 273, 4135-4142.   DOI
35 Han, W.K., Bailly, V., Abichandani, R., Thadhani, R. and Bonventre, J.V. (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int., 62, 237-244.   DOI
36 Solez, K., Colvin, R.B., Racusen, L.C., Haas, M., Sis, B., Mengel, M., Halloran, P.F., Baldwin, W., Banfi, G., Collins, A.B., Cosio, F., David, D.S., Drachenberg, C., Einecke, G., Fogo, A.B., Gibson, I.W., Glotz, D., Iskandar, S.S., Kraus, E., Lerut, E., Mannon, R.B., Mihatsch, M., Nankivell, B.J., Nickeleit, V., Papadimitriou, J.C., Randhawa, P., Regele, H., Renaudin, K., Roberts, I., Seron, D., Smith, R.N. and Valente, M. (2008) Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant., 8, 753-760.   DOI
37 Han, W.K., Waikar, S.S., Johnson, A., Betensky, R.A., Dent, C.L., Devarajan, P. and Bonventre, J.V. (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int., 73, 863-869.   DOI
38 Itokazu, Y., Segawa, Y., Inoue, N. and Omata, T. (1999) Dgalactosamine induced mouse hepatic apoptosis: possible involvement with tumor necrosis factor, but not with caspase-3 activity. Biol. Pharm. Bull., 22, 1127-1130.   DOI
39 Bonventre, J.V. (2009) Bonventre Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol. Dial. Transplant., 24, 3265-3268.   DOI
40 Kim, S.Y., Sohn, S.J., Won, A.J., Kim, H.S. and Moon, A. (2014) Identification of noninvasive biomarkers for nephrotoxicity using HK-2 human kidney epithelial cells. Toxicol. Sci., 140, 247-258.   DOI
41 Lee, Y.K., Park, E.Y., Kim, S., Son, J.Y., Kim, T.H., Kang, W.G., Jeong, T.C., Kim, K.B., Kwack, S.J., Lee, J., Kim, S., Lee, B.M. and Kim, H.S. (2014) Evaluation of cadmiuminduced nephrotoxicity using urinary metabolomic profiles in sprague-dawley male rats. J. Toxicol. Environ. Health Part A, 77, 1384-1398.   DOI
42 de Boer, I.H., Katz, R., Cao, J.J., Fried, L.F., Kestenbaum, B., Mukamal, K., Rifkin, D.E., Sarnak, M.J., Shlipak, M.G. and Siscovick, D.S. (2009) Cystatin C, albuminuria, and mortality among older adults with diabetes. Diabetes Care, 32, 1833-1838.   DOI
43 Beringer, P.M., Hidayat, L., Heed, A., Zheng, L., Owens, H., Benitez, D. and Rao, A.P. (2009) GFR estimates using cystatin C are superior to serum creatinine in adult patients with cystic fibrosis. J. Cystic Fibrosis, 8, 19-25.   DOI
44 Koyner, J.L., Bennett, M.R., Worcester, E.M., Ma, Q., Raman, J., Jeevanandam, V., Kasza, K.E., O'Connor, M.F., Konczal, D.J., Trevino, S., Devarajan, P. and Murray, P.T. (2008) Urinary cystatin C as an early biomarker of acute kidney injury following adult cardiothoracic surgery. Kidney Int., 74, 1059-1069.   DOI
45 Patarca, R., Freeman, G.J., Singh, R.P., Wei, F.Y., Durfee, T., Blattner, F., Regnier, D.C., Kozak, C.A., Mock, B.A., Morse, H.C. 3rd., Jerrells, T.R. and Cantor, H. (1989) Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J. Exp. Med., 170, 145-161.   DOI
46 Villa, P., Jimenez, M., Soriano, M.C., Manzanares, J. and Casasnovas, P. (2005) Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit. Care, 9, R139-143.
47 Herget-Rosenthal, S., Marggraf, G., Husing, J., Goring, F., Pietruck, F., Janssen, O., Philipp, T. and Kribben, A. (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int., 66, 1115-1122.   DOI
48 Oldberg, A., Franzen, A. and Heinegard, D. (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc. Natl. Acad. Sci. U.S.A., 83, 8819-8823.   DOI
49 Nomura, S., Wills, A.J., Edwards, D.R., Heath, J.K. and Hogan, B.L. (1988) Developmental expression of 2ar (osteopontin) and SPARC (osteonectin) RNA as revealed by in situ hybridization. J. Cell Biol., 106, 441-450.   DOI
50 Shiraga, H., Min, W., VanDusen, W.J., Clayman, M.D., Miner, D., Terrell, C.H., Sherbotie, J.R., Foreman, J.W., Przysiecki, C., Neilson, E.G. and Hoyer, J.R. (1992) Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc. Natl. Acad. Sci. U.S.A., 89, 426-430.   DOI
51 Brown, L.F., Berse, B., Van de Water, L., Papadopoulos-Sergiou, A., Perruzzi, C.A., Manseau, E.J., Dvorak, H.F. and Senger, D.R. (1992) Expression and distribution of osteopontin in human tissues: widespread association with luminal epithelial surfaces. Mol. Biol. Cell, 3, 1169-1180.   DOI
52 Okamura, H., Tsutsi, H., Komatsu, T., Yutsudo, M., Hakura, A., Tanimoto, T., Torigoe, K., Okura, T., Nukada, Y., Hattori, K., Akita, K., Namba, M., Tanabe, F., Konishi, K., Fukuda, S. and Kurimoto, M. (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature, 378, 88-91.   DOI
53 Chen, J., Singh, K., Mukherjee, B.B. and Sodek, J. (1993) Developmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption. Matrix, 13, 113-123.   DOI
54 Alchi, B., Nishi, S., Kondo, D., Kaneko, Y., Matsuki, A., Imai, N., Ueno, M., Iguchi, S., Sakatsume, M., Narita, I., Yamamoto, T. and Gejyo, F. (2005) Osteopontin expression in acute renal allograft rejection. Kidney Int., 67, 886-896.   DOI
55 Kahles, F., Findeisen, H.M. and Bruemmer, D. (2014) Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab., 3, 384-393.   DOI
56 Boros, P. and Bromberg, J.S. (2006) New cellular and molecular immune pathways in ischemia/reperfusion injury. Am. J. Transplant., 6, 652-658.   DOI
57 Parikh, C.R., Mishra, J., Thiessen-Philbrook, H., Dursun, B., Ma, Q., Kelly, C., Dent, C., Devarajan, P. and Edelstein, C.L. (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int., 70, 199-203.   DOI
58 Xin, C., Yulong, X., Yu, C., Changchun, C., Feng, Z. and Xinwei, M. (2008) Urine neutrophil gelatinase-associated lipocalin and interleukin-18 predict acute kidney injury after cardiac surgery. Renal Failure, 30, 904-913.   DOI
59 Drake, P.L., Krieg, E., Teass, A.W. and Vallyathan, V. (2002) Two assays for urinary N-acetyl-beta-D-glucosaminidase compared. Clin. Chem., 48, 1604-1605.
60 He, Z., Lu, L., Altmann, C., Hoke, T.S., Ljubanovic, D., Jani, A., Dinarello, C.A., Faubel, S. and Edelstein, C.L. (2008) Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury. Am. J. Physiol. Renal Physiol., 295, F1414-1421.   DOI
61 Ali, R.J., Al-Obaidi, F.H. and Arif, H.S. (2014) The role of urinary N-acetyl beta-D-glucosaminidase in children with urological problems. Oman Med. J., 29, 285-288.   DOI
62 Vaidya, V.S., Ozer, J.S., Dieterle, F., Collings, F.B., Ramirez, V., Troth, S., Muniappa, N., Thudium, D., Gerhold, D., Holder, D.J., Bobadilla, N.A., Marrer, E., Perentes, E., Cordier, A., Vonderscher, J., Maurer, G., Goering, P.L., Sistare, F.D. and Bonventre, J.V. (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol., 28, 478-485.   DOI
63 Marchewka, Z., Kuzniar, J. and Dlugosz, A. (2001) Enzymuria and beta2-mikroglobulinuria in the assessment of the influence of proteinuria on the progression of glomerulopathies. Int. Urol. Nephrol., 33, 673-676.   DOI
64 Tolkoff-Rubin, N.E., Rubin, R.H. and Bonventre, J.V. (1988) Noninvasive renal diagnostic studies. Clin. Lab. Med., 8, 507-526.
65 Schaub, S., Wilkins, J.A., Antonovici, M., Krokhin, O., Weiler, T., Rush, D. and Nickerson, P. (2005) Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am. J. Transplant., 5, 729-738.   DOI
66 Gautier, J.C., Riefke, B., Walter, J., Kurth, P., Mylecraine, L., Guilpin, V., Barlow, N., Gury, T., Hoffman, D., Ennulat, D., Schuster, K., Harpur, E. and Pettit, S. (2010) Evaluation of novel biomarkers of nephrotoxicity in two strains of rat treated with Cisplatin. Toxicol. Pathol., 38, 943-956.   DOI
67 Donadio, C., Lucchesi, A., Ardini, M. and Giordani, R. (2001) Cystatin C, beta 2-microglobulin, and retinol-binding protein as indicators of glomerular filtration rate: comparison with plasma creatinine. J. Pharm. Biomed. Anal., 24, 835-842.   DOI
68 Branten, A.J., Mulder, T.P., Peters, W.H., Assmann, K.J. and Wetzels, J.F. (2000) Urinary excretion of glutathione S transferases alpha and pi in patients with proteinuria: reflection of the site of tubular injury. Nephron, 85, 120-126.   DOI
69 Harrison, D.J., Kharbanda, R., Cunningham, D.S., McLellan, L.I., and Hayes, J.D. (1989) Distribution of glutathione Stransferase isoenzymes in human kidney: basis for possible markers of renal injury. J. Clin. Pathol., 42, 624-628.   DOI
70 Svendsen, K.B., Ellingsen, T., Bech, J.N., Pfeiffer-Jensen, M., Stengaard-Pedersen, K. and Pedersen, E.B. (2005) Urinary excretion of ${\alpha}$-GST and albumin in rheumatoid arthritis patients treated with methotrexate or other DMARDs alone or in combination with NSAIDs. Scand. J. Rheumatol., 34, 34-39.   DOI
71 Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten, R.E., Wei, R., Fleming, M.D., Schreiber, S.L. and Cantley, L.C. (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452, 230-233.   DOI
72 Mazurek, S., Drexler, H.C., Troppmair, J., Eigenbrodt, E. and Rapp, U.R. (2007) Regulation of pyruvate kinase type M2 by A-Raf: a possible glycolytic stop or go mechanism. Anticancer Res., 27, 3963-3971.
73 Wakino, S., Hasegawa, K. and Itoh, H. (2015) Sirtuin and metabolic kidney disease. Kidney Int., 88, 691-698.   DOI
74 Muirhead, H. (1990) Isoenzymes of pyruvate kinase. Biochem. Soc. Trans., 18, 193-196.   DOI
75 Weiss, R.H. and Kim, K. (2011) Metabolomics in the study of kidney diseases. Nat. Rev. Nephrol., 8, 22-33.
76 Zager, R.A., Johnson, A.C. and Becker, K. (2014) Renal cortical pyruvate depletion during AKI. J. Am. Soc. Nephrol., 25, 998-1012.   DOI
77 He, G., Jiang, Y., Zhang, B. and Wu, G. (2014) The effect of HIF-1${\alpha}$ on glucose metabolism, growth and apoptosis of pancreatic cancerous cells. Asia Pac. J. Clin. Nutr., 23, 174-180.
78 Bartrons, R. and Caro, J. (2007) Hypoxia, glucose metabolism and the Warburg's effect. J. Bioenerg. Biomembr., 39, 223-229.   DOI
79 Yang, X.Y., Zheng, K.D., Lin, K., Zheng, G., Zou, H., Wang, J.M., Lin, Y.Y., Chuka, C.M., Ge, R.S., Zhai, W. and Wang, J.G. (2015) Energy metabolism disorder as a contributing factor of rheumatoid arthritis: a comparative proteomic and metabolomic study. PLoS One, 10, e0132695.   DOI
80 Van Biesen, W., Vanholder, R. and Lamiere, N. (2006) Defining acute renal failure: RIFLE and beyond. Clin. J. Am. Soc. Nephrol., 1, 1314-1319.   DOI
81 Basile, D.P., Anderson, M.D. and Sutton, T.A. (2012) Pathophysiology of acute kidney injury. Compr. Physiol., 2, 1303-1353.
82 Ricci, Z., Cruz, D.N. and Ronco, C. (2011) Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria. Nat. Rev. Nephrol., 7, 201-208.   DOI