• 제목/요약/키워드: Biomarker gene

검색결과 230건 처리시간 0.022초

Characterization of gltA::luxCDABE Fusion in Escherichia coli as a Toxicity Biosensor

  • Ahn, Joo-Myung;Kim, Byoung-Chan;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.516-521
    • /
    • 2006
  • The use of gltA gene, as a new biomarker for environmental stress biomonitoring, was investigated because of its key position as the first enzyme of the tricarboxylic acid (TCA) cycle. A recombinant bioluminescent Escherichia coli strain, EBJM2, was constructed using a plasmid carrying the citrate synthase (gltA) promoter transcribing the Photorhabdus luminescens IuxCDABE genes (gltA::luxCDABE). The responses from this strain were studied with five different classes of toxicants: DNA damage chemicals, phenolics, oxidative-stress chemicals, PAHs, and organic solvents. EBJM2 responded strongly to DNA damage chemicals, such as mitomycin C (MMC) and methyl-nitro-nitrosoguanidine (MNNG) and nalidixic acid with the strongest responses. In contrast, tests with several compounds from the other four classes of toxicants gave no significant response. Therefore, EBJM2 was found to be sensitive to DNA damage chemicals.

Metallothionein gene expression in different tissues of Crucian carp (Carassius auratus) exposed to cadmium chloride

  • Park, Kwang-Sik;Bae , Hee-Kyung;Nam, Seong-Sook;Kim, En-Kyoung
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.295.1-295.1
    • /
    • 2002
  • Metallothioneins (MTs) are a go up of heavy metal-binding proteins characterized by cystein-rich low molecular weight(6000 - 10.000 Da). They plays a major role in the detoxification of heavy metals and also in scavenging of superoxide radicals. They are known to be induced by heavy metals in various organs of different species and represent a potential biomarker of aquatic heavy metal contamination. (omitted)

  • PDF

miR-205 in Situ Expression and Localization in Head and Neck Tumors - a Tissue Array Study

  • Ab Mutalib, Nurul-Syakima;Lee, Learn-Han;Cheah, Yoke-Kqueen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9071-9075
    • /
    • 2014
  • Background: microRNAs are small non-coding RNA that control gene expression by mRNA degradation or translational inhibition. These molecules are known to play essential roles in many biological and physiological processes. miR-205 may be differentially expressed in head and neck cancers; however, there are conflicting data and localization of expression has yet to be determined. Materials and Methods: miR-205 expression was investigated in 48 cases of inflammatory, benign and malignant tumor tissue array of the neck, oronasopharynx, larynx and salivary glands by Locked Nucleic Acid in situ hybridization (LNA-ISH) technology. Results: miR-205 expression was significantly differentially expressed across all of the inflammatory, benign and malignant tumor tissues of the neck. A significant increase in miR-205 staining intensity (p<0.05) was observed from inflammation to benign and malignant tumors in head and neck tissue array, suggesting that miR-205 could be a biomarker to differentiate between cancer and non-cancer tissues. Conclusions: LNA-ISH revealed that miR-205 exhibited significant differential cytoplasmic and nuclear staining among inflammation, benign and malignant tumors of head and neck. miR-205 was not only exclusively expressed in squamous epithelial malignancy. This study offers information and a basis for a comprehensive study of the role of miR-205 that may be useful as a biomarker and/or therapeutic target in head and neck tumors.

Ranking Candidate Genes for the Biomarker Development in a Cancer Diagnostics

  • Kim, In-Young;Lee, Sun-Ho;Rha, Sun-Young;Kim, Byung-Soo
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.272-278
    • /
    • 2004
  • Recently, Pepe et al. (2003) employed the receiver operating characteristic (ROC) approach to rank candidate genes from a microarray experiment that can be used for the biomarker development with the ultimate purpose of the population screening of a cancer, In the cancer microarray experiment based on n patients the researcher often wants to compare the tumor tissue with the normal tissue within the same individual using a common reference RNA. This design is referred to as a reference design or an indirect design. Ideally, this experiment produces n pairs of microarray data, where each pair consists of two sets of microarray data resulting from reference versus normal tissue and reference versus tumor tissue hybridizations. However, for certain individuals either normal tissue or tumor tissue is not large enough for the experimenter to extract enough RNA for conducting the microarray experiment, hence there are missing values either in the normal or tumor tissue data. Practically, we have $n_1$ pairs of complete observations, $n_2$ 'normal only' and $n_3$ 'tumor only' data for the microarray experiment with n patients, where n=$n_1$+$n_2$+$n_3$. We refer to this data set as a mixed data set, as it contains a mix of fully observed and partially observed pair data. This mixed data set was actually observed in the microarray experiment based on human tissues, where human tissues were obtained during the surgical operations of cancer patients. Pepe et al. (2003) provide the rationale of using ROC approach based on two independent samples for ranking candidate gene instead of using t or Mann -Whitney statistics. We first modify ROC approach of ranking genes to a paired data set and further extend it to a mixed data set by taking a weighted average of two ROC values obtained by the paired data set and two independent data sets.

  • PDF

Clinicopathological Significance of Osteopontin in Cholangiocarcinoma Cases

  • Laohaviroj, Marut;Chamgramol, Yaovalux;Pairojkul, Chawalit;Mulvenna, Jason;Sripa, Banchob
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권1호
    • /
    • pp.201-205
    • /
    • 2016
  • Cholangiocarcinoma (CCA) is generally a rare primary liver tumor of the bile duct with extremely poor clinical outcomes due to late diagnosis. Osteopontin (OPN) is the most abundant expressed gene in intrahepatic CCA and its involvement in tumor aggressiveness suggests it could be a useful prognostic biomarker. However, the prognostic significance of OPN expression in CCA is still controversial. We therefore immunohistochemically studied OPN expression in 354 resected CCAs and correlated the results with patient clinicopathological parameters. OPN expression was separately scored according to the percentage of cancer cells or degree of stromal tissue staining and classified as low (score 0-1) and high (score 2-3). OPN expression in CCA cells was found in 177 out of 354 patients (56.5%), whereas stroma was positive in 185 out of 354 patients (52.3%). Univariate analysis with several of the aforementioned parameters revealed that stromal but not cancer cell OPN expression was significantly associated with tumor size, tumor direct invasion into normal liver parenchyma, regional lymph node metastasis and higher staging. The combination of cancer cell and stromal OPN expression demonstrated a positive trend for linkage with lymph node metastasis. Multivariate analysis identified gender, the presence of lymphatic permeation and lymph node metastasis, but not OPN expression, as independent prognostic factors. This study confirms the presence of stromal OPN expression in tumor aggressiveness but not survival in CCA patients.

MicroRNA-21 Regulates the Invasion and Metastasis in Cholangiocarcinoma and May Be a Potential Biomarker for Cancer Prognosis

  • Huang, Qiang;Liu, Lei;Liu, Chen-Hai;You, Hao;Shao, Feng;Xie, Fang;Lin, Xian-Sheng;Hu, San-Yuan;Zhang, Chuan-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권2호
    • /
    • pp.829-834
    • /
    • 2013
  • Background: MicroRNAs are noncoding RNA molecules that posttranscriptionally regulate gene expression. The aim of this study was to determine the role of microRNA-21 in cholangiocarcinomas and its relationship to cholangiocarcinoma RBE cell capacity for invasion and metastasis. Methods: MicroRNA-21 expression was investigated in 41 cases of cholangiocarcinoma samples by in situ hybridization and real-time PCR. Influence on cholangiocarcinoma cell line invasion and metastasis was analyzed with microRNA-21 transfected cells. In addition, regulation of reversion-inducing-cysteine-rich protein with kazal motifs (RECK) by microRNA-21 was elucidated to identify mechanisms. Results: In situ hybridization and real-time quantitative PCR results for patients with lymph node metastasis or perineural invasion showed significantly high expression of microRNA-21 (P<0.05). There was a dramatic decrease in cholangiocarcinoma cell line invasion and metastasis ability after microRNA-21 knockdown (P<0.05). However, overexpression significantly increased invasion and metastasis (P<0.05). Real-time PCR and Western-blot analysis showed that microRNA-21 could potentially inhibit RECK expression in RBE cells. Survival analysis showed that patients with higher expression levels of microRNA-21 more often had a poor prognosis (P<0.05). Conclusions: MicroRNA-21 may play an important role in cholangiocarcinoma invasion and metastasis, suggesting that MicroRNA-21 should be further evaluated as a biomarker for predicting cholangiocarcinoma prognosis.

Identification of a novel PARP4 gene promoter CpG locus associated with cisplatin chemoresistance

  • Hye Youn Sung;Jihye Han;Yun Ju Chae;Woong Ju;Jihee Lee Kang;Ae Kyung Park;Jung-Hyuck Ahn
    • BMB Reports
    • /
    • 제56권6호
    • /
    • pp.347-352
    • /
    • 2023
  • The protein family of poly (ADP-ribose) polymerases (PARPs) is comprised of multifunctional nuclear enzymes. Several PARP inhibitors have been developed as new anticancer drugs to combat resistance to chemotherapy. Herein, we characterized PARP4 mRNA expression profiles in cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines. PARP4 mRNA expression was significantly upregulated in cisplatin-resistant ovarian cancer cell lines, and this upregulation was associated with the hypomethylation of specific cytosine-phosphate-guanine (CpG) sites (cg18582260 and cg17117459) on its promoter. Reduced PARP4 expression was restored by treating cisplatin-sensitive cell lines with a demethylation agent, implicating the epigenetic regulation of PARP4 expression by promoter methylation. Depletion of PARP4 expression in cisplatin-resistant cell lines reduced cisplatin chemoresistance and promoted cisplatin-induced DNA fragmentation. The differential mRNA expression and DNA methylation status at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) according to cisplatin responses, was further validated in primary ovarian tumor tissues. The results showed significantly increased PARP4 mRNA expressions and decreased DNA methylation levels at specific PARP4 promoter CpG sites (cg18582260 and cg17117459) in cisplatin-resistant patients. Additionally, the DNA methylation status at cg18582260 CpG sites in ovarian tumor tissues showed fairly clear discrimination between cisplatin-resistant patients and cisplatin-sensitive patients, with high accuracy (area under the curve = 0.86, P = 0.003845). Our findings suggest that the DNA methylation status of PARP4 at the specific promoter site (cg18582260) may be a useful diagnostic biomarker for predicting the response to cisplatin in ovarian cancer patients.

Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma

  • Keerakarn Somsuan;Siripat Aluksanasuwan
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.22.1-22.15
    • /
    • 2023
  • Kidney renal clear cell carcinoma (KIRC) is one of the most aggressive cancer type of the urinary system. Metastatic KIRC patients have poor prognosis and limited therapeutic options. Ankyrin 3 (ANK3) is a scaffold protein that plays important roles in maintaining physiological function of the kidney and its alteration is implicated in many cancers. In this study, we investigated differential expression of ANK3 in KIRC using GEPIA2, UALCAN, and HPA databases. Survival analysis was performed by GEPIA2, Kaplan-Meier plotter, and OS-kirc databases. Genetic alterations of ANK3 in KIRC were assessed using cBioPortal database. Interaction network and functional enrichment analyses of ANK3-correlated genes in KIRC were performed using GeneMANIA and Shiny GO, respectively. Finally, the TIMER2.0 database was used to assess correlation between ANK3 expression and immune infiltration in KIRC. We found that ANK3 expression was significantly decreased in KIRC compared to normal tissues. The KIRC patients with low ANK3 expression had poorer survival outcomes than those with high ANK3 expression. ANK3 mutations were found in 2.4% of KIRC patients and were frequently co-mutated with several genes with a prognostic significance. ANK3-correlated genes were significantly enriched in various biological processes, mainly involved in peroxisome proliferator-activated receptor (PPAR) signaling pathway, in which positive correlations of ANK3 with PPARA and PPARG expressions were confirmed. Expression of ANK3 in KIRC was significantly correlated with infiltration level of B cell, CD8+ T cell, macrophage, and neutrophil. These findings suggested that ANK3 could serve as a prognostic biomarker and promising therapeutic target for KIRC.

Expression of Cu/Zn Superoxide Dismutase (Cu/Zn-SOD) mRNA in Shark, Schyliorhinus torazame, Liver during Acute Cadmium Exposure

  • Cho, Young-Sun;Ha, En-Mi;Bang, In-Chul;Kim, Dong-Soo;Nam, Yoon-Kwon
    • 한국양식학회지
    • /
    • 제18권3호
    • /
    • pp.173-179
    • /
    • 2005
  • Superoxide dismutase (SOD), an antioxidant enzyme catalyzing the first step for scavenging the reactive oxygen species is important as an early warning indicator to address various biological stresses. For this reason, the monitoring the expressed pattern of SOD gene in fish organs is one of important biomarkers to assess the aquatic pollution caused by many toxic chemicals. Based on the Northern blot hybridization, semi-quantitative and/or realtime RT-PCRs, the alteration of SOD gene transcripts in shark liver was examined during the experimental acute exposures to cadmium. The expression of SOD at mRNA level was up-regulated both by injection (0, 0.5, 1 or 2 mg $CdCl_2/kg$ body weight for 48 hours) and by immersion (0 or $5{\mu}M$ Cd for 0, 1, 4 and 7 days) treatments of cadmium. The transcriptional stimulation of shark SOD gene by cadmium exposure was dependent upon doses and durations: there was a trend toward more increase in higher dose and longer durations of exposure. The hepatic SOD mRNA levels showed also a general agreement with the tissue cadmium concentrations accumulated in immersion exposure. This result may provide useful strategy to develop a fine molecular biomarker at mRNA level for detecting aquatic pollution caused by toxic metals.

Screening of Ecotoxicant Responsive Genes and Expression Analysis of Benzo[a]pyrene-exposed Rockfish (Sebastes schlgeli)

  • Yum, Seung-Shic;Woo, Seon-Ock;Lee, Taek-Kyun
    • Molecular & Cellular Toxicology
    • /
    • 제2권2호
    • /
    • pp.114-119
    • /
    • 2006
  • Benzo[a]pyrene is a representative ecotoxicant in marine environment and a model compound of polycyclic aromatic hydrocarbons, which has an ability to bioaccumulate in aquatic organisms. This study aimed to identify molecular biomarkers suitable for assessing environmental pollution using a microarray technique. We examined the effects of benzo[a]pyrene on gene expressions in the rockfish, Sebastes schlegeli. We constructed the subtractive cDNA library with hepatic RNA from benzo[a]pyrene-exposed and non-exposed control fish. From the library 10,000 candidate clones were selected randomly and cDNA microarray was constructed. We determined benzo[a]pyrene-responsive genes using a high-density microarray. Statistical analysis showed that approximately 400 genes are significantly induced or reduced by benzo[a]pyrene treatment ($2\;{\mu}m$). Especially gene expression changes of 4 candidate clones among the up- or down-regulated genes were investigated in 6, 12 and 24 hr BaP-exposed fish groups. Many methods have been developed to monitor marine environmental status, which depend on quantifying the levels of the toxic components in polluted seawater or on ecological accessing, such as species diversity or richness. However, those methods could not provide information on physiological or genetic changes induced by such environmental stresses. Comparing with the conventional methods, these data will propose that benzo[a]pyrene-responsive genes can be useful for biological risk assessment of polycyclic aromatic hydrocarbons on marine organism at molecular level.