• Title/Summary/Keyword: Biologically Inspired

Search Result 42, Processing Time 0.027 seconds

Development of a Legged Walking Robot Based on Jansen Kinetics (얀센 키네틱스를 기반으로 한 보행 로봇 개발)

  • Kim, Sun-Wook;Kim, Yeoun-Gyun;Jung, Hah-Min;Lee, Se-Han;Hwang, Seung-Gook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.509-515
    • /
    • 2010
  • In this paper, the mechanism that can walk efficiently in wet land or sand area is proposed. A vision camera is attached to the mechanism, which makes a kind of biologically inspired robot for coast guard. This visionary information enables the biologically inspired robot to react in peripheral environment by a soft-computing algorithm. In addition, the biologically inspired robot can achieve the mission appointed by a programmer connecting with outside, based on RF and Blue-tooth communication module. Therefore, the purpose of this research is the implementation of the biologically inspired robot that can operate most adaptively in sand and wet surface based on Theo Jansen mechanism.

Biologically Inspired Node Scheduling Control for Wireless Sensor Networks

  • Byun, Heejung;Son, Sugook;Yang, Soomi
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.506-516
    • /
    • 2015
  • Wireless sensor networks (WSNs) are generally comprised of densely deployed sensor nodes, which results in highly redundant sensor data transmissions and energy waste. Since the sensor nodes depend on batteries for energy, previous studies have focused on designing energy-efficient medium access control (MAC) protocols to extend the network lifetime. However, the energy-efficient protocols induce an extra end-to-end delay, and therefore recent increase in focus on WSNs has led to timely and reliable communication protocols for mission-critical applications. In this paper, we propose an energy efficient and delay guaranteeing node scheduling scheme inspired by biological systems, which have gained considerable attention as a computing and problem solving technique.With the identification of analogies between cellular signaling systems and WSN systems, we formulate a new mathematical model that considers the networking challenges of WSNs. The proposed bio-inspired algorithm determines the state of the sensor node, as required by each application and as determined by the local environmental conditions and the states of the adjacent nodes. A control analysis shows that the proposed bio-inspired scheme guarantees the system stability by controlling the parameters of each node. Simulation results also indicate that the proposed scheme provides significant energy savings, as well as reliable delay guarantees by controlling the states of the sensor nodes.

A biologically inspired model based on a multi-scale spatial representation for goal-directed navigation

  • Li, Weilong;Wu, Dewei;Du, Jia;Zhou, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1477-1491
    • /
    • 2017
  • Inspired by the multi-scale nature of hippocampal place cells, a biologically inspired model based on a multi-scale spatial representation for goal-directed navigation is proposed in order to achieve robotic spatial cognition and autonomous navigation. First, a map of the place cells is constructed in different scales, which is used for encoding the spatial environment. Then, the firing rate of the place cells in each layer is calculated by the Gaussian function as the input of the Q-learning process. The robot decides on its next direction for movement through several candidate actions according to the rules of action selection. After several training trials, the robot can accumulate experiential knowledge and thus learn an appropriate navigation policy to find its goal. The results in simulation show that, in contrast to the other two methods(G-Q, S-Q), the multi-scale model presented in this paper is not only in line with the multi-scale nature of place cells, but also has a faster learning potential to find the optimized path to the goal. Additionally, this method also has a good ability to complete the goal-directed navigation task in large space and in the environments with obstacles.

Kinematic Analysis of a Legged Walking Robot Based on Four-bar Linkage and Jansen Mechanism (4절 링크 이론과 얀센 메커니즘을 기반으로 한 보행 로봇의 운동학 해석)

  • Kim, Sun-Wook;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.159-164
    • /
    • 2011
  • In this study, a crab robot is implemented in H/W based on four-bar linkage mechanism and Jansen mechanism, and its kinematics is analysed. A vision camera is attached to the mechanism, which makes the proposed robot a kind of biologically inspired robot for image acquisition. Three ultrasonic sensors are adopted for obstacle avoidance. In addition, the biologically inspired robot can achieve the mission appointed by a programmer outside, based on RF and Blue-tooth communication module. For the design and implementation of a crab robot, it is need to get joint variable, a foot point, and their relation. Thus, the proposed kinematic analysis is very important process for the design and implementation of legged robots.

Optimal design of bio-inspired isolation systems using performance and fragility objectives

  • Hu, Fan;Shi, Zhiguo;Shan, Jiazeng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.325-343
    • /
    • 2018
  • This study aims to propose a performance-based design method of a novel passive base isolation system, BIO isolation system, which is inspired by an energy dissipation mechanism called 'sacrificial bonds and hidden length'. Fragility functions utilized in this study are derived, indicating the probability that a component, element, or system will be damaged as a function of a single predictive demand parameter. Based on PEER framework methodology for Performance-Based Earthquake Engineering (PBEE), a systematic design procedure using performance and fragility objectives is presented. Base displacement, superstructure absolute acceleration and story drift ratio are selected as engineering demand parameters. The new design method is then performed on a general two degree-of-freedom (2DOF) structure model and the optimal design under different seismic intensities is obtained through numerical analysis. Seismic performances of the biologically inspired (BIO) isolation system are compared with that of the linear isolation system. To further demonstrate the feasibility and effectiveness of this method, the BIO isolation system of a 4-storey reinforced concrete building is designed and investigated. The newly designed BIO isolators effectively decrease the superstructure responses and base displacement under selected earthquake excitations, showing good seismic performance.

Development of Jumping Mechanism for Small Reconnaissance Robot (소형 정찰 로봇의 도약 메커니즘 개발)

  • Tae, Won-Seok;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.563-570
    • /
    • 2009
  • In the future, most military activities will be replaced by robots. Because of many dangerous factors in battlefield, reconnaissance should be performed by robot. Reconnaissance robot should be small for not being detected, be light and simple structure for personal portability and overcome unexpected rough terrain for mission completion. In case of small and light robot, it can't get enough friction force for movement. Therefore small reconnaissance robot need jumping function for movement. In this paper we proposed a biologically inspired jumping mechanism. And we adjusted moment and jumping angle by using four bar linkage, especially varying coupler length.

A Biologically Inspired New Hardware Fault Detection: immunotronic and Genetic Algorithm-Based Approach

  • Lee, Sanghyung;Kim, Euntai;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.7-11
    • /
    • 2004
  • This paper proposes a new immunotronic approach for the fault detection in hardware. The suggested method is, inspired by biology and its implementation is based on genetic algorithm. Tolerance conditions in the immunotronic system for fault detection correspond to the antibodies in the biological immune system. A novel algorithm of generating tolerance conditions is suggested based on the principle of the antibody diversity and GA optimization is employed to select mature tolerance conditions in immunotronic fault detection system. The suggested method is applied to the fault detection for MCNC benchmark FSMs (finite state machines) and its effectiveness is demonstrated by the computer simulation.