• 제목/요약/키워드: Biological systems

검색결과 2,230건 처리시간 0.029초

Green Fluorescent Protein as a Marker for Monitoring a Pentachlorophenol Degrader Sphingomonas chlorophenolica ATCC39723

  • Oh, Eun-Taex;So, Jae-Seong;Kim, Byung-Hyuk;Kim, Jong-Sul;Koh, Sung-Cheol
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.243-247
    • /
    • 2004
  • Sphingomonas chlorophenolica ATCC39723 was successfully labeled with the gfp (green fluorescent protein) gene inserted into the pcpB gene by homologous recombination. As the gfp recombinant was easily distinguished from other indigenous organisms, the population of gfp recombinant was monitored after being released into the soil microcosms. Their population density dropped from 10$\^$8/ to 10$\^$6/ (cfu/$m\ell$) in the non-sterilized soil microcosms during the first 6 days. Moreover, the gfp recombinant was not detected even at lower dilution rates after a certain time period. The recombinant, however, survived for at least 28 days in the sterilized soil microcosms. Although the gfp recombinant did not degrade pentachlorophenol (PCP), this experiment showed the possibility of using gfp as a monitoring reporter system for S. chlorophenolica ATCC39723 and potentially other species of Sphingomonas.

Effects of Pluronic F-68 on Cell Growth of Digitalis lanata in Aqueous Two-Phase Systems

  • 이상윤;김동일
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1129-1133
    • /
    • 2004
  • The effects of Pluronic F-68, a non-ionic surfactant, on the growth and physical characteristics of Digitalis lanata suspension cultures were investigated in aqueous two-phase systems (ATPSs) composed of $4.5\%$ polyethylene glycol (PEG) 20,000 and $2.8\%$ crude dextran. In the range of 0.1-10.0 g $1^{-1}$, Pluronic F-68 enhanced the maximum cell density in a medium with ATPSs, even though Pluronic F-68 did not affect cell growth in a normal growth medium. In terms of physical properties of ATPSs with cell suspension cultures, 0.2 g $1^{-1}$ of Pluronic F-68 reduced viscosity by up to $40\%$, while 0.1 g $1^{-1}$ of Pluronic F-68 significantly enhanced the oxygen transfer rate. In addition, we successfully performed aqueous two-phase cultivation in a 5-1 stirred tank bioreactor with 0.5 g $1^{-1}$ of Pluronic F-68, and discovered that cell growth in ATPSs was similar to that in normal growth medium.

형태학적 연산과 뇌종양 평균 크기를 이용한 감마나이프 치료 범위 자동 검출 알고리즘 (Automatic Detection Algorithm of Radiation Surgery Area using Morphological Operation and Average of Brain Tumor Size)

  • 나승대;이기현;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제18권10호
    • /
    • pp.1189-1196
    • /
    • 2015
  • In this paper, we proposed automatic extraction of brain tumor using morphological operation and statistical tumors size in MR images. Neurosurgery have used gamma-knife therapy by MR images. However, the gamma-knife plan systems needs the brain tumor regions, because gamma-ray should intensively radiate to the brain tumor except for normal cells. Therefore, gamma-knife plan systems spend too much time on designating the tumor regions. In order to reduce the time of designation of tumors, we progress the automatical extraction of tumors using proposed method. The proposed method consist of two steps. First, the information of skull at MRI slices remove using statistical tumors size. Second, the ROI is extracted by tumor feature and average of tumors size. The detection of tumor is progressed using proposed and threshold method. Moreover, in order to compare the effeminacy of proposed method, we compared snap-shot and results of proposed method.

운동심상 EEG 패턴분석을 위한 HSA 기반의 HMM 최적화 방법 (HSA-based HMM Optimization Method for Analyzing EEG Pattern of Motor Imagery)

  • 고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.747-752
    • /
    • 2011
  • HMMs (Hidden Markov Models) are widely used for biological signal, such as EEG (electroencephalogram) sequence, analysis because of their ability to incorporate sequential information in their structure. A recent trends of research are going after the biological interpretable HMMs, and we need to control the complexity of the HMM so that it has good generalization performance. So, an automatic means of optimizing the structure of HMMs would be highly desirable. In this paper, we described a procedure of classification of motor imagery EEG signals using HMM. The motor imagery related EEG signals recorded from subjects performing left, right hand and foots motor imagery. And the proposed a method that was focus on the validation of the HSA (Harmony Search Algorithm) based optimization for HMM. Harmony search algorithm is sufficiently adaptable to allow incorporation of other techniques. A HMM training strategy using HSA is proposed, and it is tested on finding optimized structure for the pattern recognition of EEG sequence. The proposed HSA-HMM can performs global searching without initial parameter setting, local optima, and solution divergence.

가중유출수질지표를 이용한 활성오니공정모델의 민감도 분석과 매개변수 보정 (Sensitivity Analysis and Parameter Estimation of Activated Sludge Model Using Weighted Effluent Quality Index)

  • 이원영;김민한;김영황;이인범;유창규
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1174-1179
    • /
    • 2008
  • Many modeling and calibration methods have been developed to analyze and design the biological wastewater treatment process. For the systematic use of activated sludge model (ASM) in a real treatment process, a most important step in this usage is a calibration which can find a key parameter set of ASM, which depends on the microorganism communities and the process conditions of the plants. In this paper, a standardized calibration protocol of the ASM model is developed. First, a weighted effluent quality index(WEQI) is suggested far a calibration protocol. Second, the most sensitive parameter set is determined by a sensitive analysis based on WEQI and then a parameter optimization method are used for a systematic calibration of key parameters. The proposed method is applied to a calibration problems of the single carbon removal process. The results of the sensitivity analysis and parameter estimation based on a WEQI shows a quite reasonable parameter set and precisely estimated parameters, which can improve the quality and the efficiency of the modeling and the prediction of ASM model. Moreover, it can be used for a calibration scheme of other biological processes, such as sequence batch reactor, anaerobic digestion process with a dedicated methodology.

An Interface between Computing, Ecology and Biodiversity : Environmental Informatics

  • Stockwell, David;Arzberger, Peter;Fountain, Tony;Helly, John
    • The Korean Journal of Ecology
    • /
    • 제23권2호
    • /
    • pp.101-106
    • /
    • 2000
  • The grand challenge for the 21$^{st$ century is to harness knowledge of the earth`s biological and ecological diversity to understand how they shape global environmental systems. This insight benefits both science and society. Biological and ecological data are among the most diverse and complex in the scientific realm. spanning vast temporal and spatial scales, distant localities. and multiple disciplines. Environmental informatics is an emerging discipline applying information science, ecology, and biodiversity to the understanding and solution of environmental problems. In this paper we give an overview of the experiences of the San Diego Supercomputer Center (SDSC) with this new multidisciplinary science, discuss the application of computing resources to the study of environmental systems, and outline strategic partnership activities in environmental iformatics that are underway, We hope to foster interactions between ecology, biodiversity, and conservation researchers in East Asia-Pacific Rim and those at SDSC and the Partnership for Biodiversity Informatics.

  • PDF

The classification of biotope type and characteristics of naturalized plant habitat on the coastal sand dune ecosystem

  • Lee, Jeom-Sook;Jeon, Ji-Young;Ihm, Byung-Sun;Myeong, Hyeon-Ho
    • Journal of Ecology and Environment
    • /
    • 제35권3호
    • /
    • pp.167-175
    • /
    • 2012
  • Coastal sand dune systems are particularly fragile and threaten the environment. However, these systems provide fundamental ecosystem services to the nearby urban areas, acting, for example, as protective buffers against erosion. In this paper, we attempt to classify the biotope types of coastal sand dune ecosystems and select an index for the assessment of the conservation value. The types of biotopes are categorized based on the vegetation map; floras are examined in order to research the effects of hinterlands on coastal sand dunes. In addition, a naturalization rate and an urbanization index for each biotope type in hinterlands are analyzed. In the ecosystem of coastal sand dunes, the urbanization index and naturalization rate shows a higher value in sand dunes with areas of road, residential, and idle land in farm villages, rice fields, and fields. On the contrary, a lower value in the urbanization index and naturalization rate is present when typical biotope types, such as sand dune vegetation and natural Pinus thunbergii forests, are widely distributed. Based on these results, urbanization index and naturalization rate should be used as critical indices for the assessment of the ecosystem of costal sand dunes.

미래의 항우울제:어떠한 것들이 개발되고 있는가? (Recent Development on Future Antidepressants)

  • 김용구
    • 생물정신의학
    • /
    • 제11권1호
    • /
    • pp.14-25
    • /
    • 2004
  • The current understanding of the mechanisms of pharmacotherapy for depression is characterized by an emphasis on increasing synaptic availability of serotonin, noradrenaline, and possibly dopamine, while minimizing side effects. The acute effects of current available effective antidepressants include blocking selective serotonin or noradrenaline reuptake, alpha2 autoreceptors or monoamine oxidase. Although efficacious, current treatments often produce partial or limited symptomatic improvement rather than remission. While current pharmacotherapies target monoaminergic systems, distinct neurobiological underpinnings and other systems are likely involved in the pathogenesis of depression. Recently, several promising hypotheses of depression and antidepressant action have been formulated. These hypotheses are largely based on dsyregulation of neural plasticity, CREB, BDNF, corticotropin-releasing factor, glucocorticoid, hypothalamic-pituitary adrenal axis and cytokines. Based on these new theories and hypotheses of depression, a number of new and novel agents, including corticotropin-releasing factor antagonists, antiglucocorticoids, and substance P antagonists show a considerable promise for refining treatment options for depression. In this article, the current available pharmacotherapies, current understanding of neurobiology and pathogenesis of depression and new and promising directions in pharmacological research on depression will be discussed.

  • PDF

Message in a Bottle: Chemical Biology of Induced Disease Resistance in Plants

  • Schreiber, Karl;Desveaux, Darrell
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.245-268
    • /
    • 2008
  • The outcome of plant-pathogen interactions is influenced significantly by endogenous small molecules that coordinate plant defence responses. There is currently tremendous scientific and commercial interest in identifying chemicals whose exogenous application activates plant defences and affords protection from pathogen infection. In this review, we provide a survey of compounds known to induce disease resistance in plants, with particular emphasis on how each compound was originally identified, its putative or demonstrated mechanism of defence induction, and the known biological target(s) of each chemical. Larger polymeric structures and peptides/proteins are also discussed in this context. The quest for novel defence-inducing molecules would be aided by the capability for high-throughput analysis of candidate compounds, and we describe some issues associated with the development of these types of screens. Subsequent characterization of hits can be a formidable challenge, especially in terms of identifying chemical targets in plant cells. A variety of powerful molecular tools are available for this characterization, not only to provide insight into methods of plant defence activation, but also to probe fundamental biological processes. Furthermore, these investigations can reveal molecules with significant commercial potential as crop protectants, although a number of factors must be considered for this potential to be realized. By highlighting recent progress in the application of chemical biology techniques for the modulation of plant-pathogen interactions, we provide some perspective on the exciting opportunities for future progress in this field of research.

Investigation of Generative Contactile Force of Frog Muscle under Electrical Stimulation

  • Park, Suk-Ho;Jee, Chang-Yeol;Kwon, Ji-Woon;Park, Sung-Jin;Kim, Byung-Kyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1914-1919
    • /
    • 2006
  • Recently, the microrobots powered by biological muscle actuators were proposed. Among the biological muscle actuators, frog muscle is well known as a good muscle actuator and has a large displacement, actuation forces and piezoelectric properties. Therefore, for the application of the biomimetic microrobot, this paper reports the electromechanical properties of frog muscle. First of all, the experimental setup has been established for measuring generative force of the frog muscle. Through the various electrical stimulating inputs to the frog muscle, we measured the contractile force of the frog muscle. From the measuring results, we found that the actuating contractile force responses of the frog muscle are determined by the amplitude, frequency, duty ratio, and wave form of the stimulation signal. This study will be beneficial for the development of the microrobot actuated by frog muscle.