• Title/Summary/Keyword: Biological systems

Search Result 2,229, Processing Time 0.034 seconds

Antioxidative and Antiaging Effects of Persicaria hydropiper L. Extracts (여뀌 추출물의 항산화 및 항노화에 관한 연구)

  • Kim, Eun-Hee;Kim, Jung-Eun;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.4
    • /
    • pp.293-300
    • /
    • 2009
  • In this study, we investigated the antioxidative activity and inhibitory effects on elastase and tyrosinase of Persicaria hydropiper L. extracts. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) of ethyl acetate fractions of Persicaria hydropiper L. was $5.23\;{\mu}g/mL$. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of some Persicaria hydropiper L. extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol - dependent chemiluminescence assay. The ROS scavenging activities ($OSC_{50}$) of ethyl acetate fractions of Persicaria hydropiper L. was $0.40\;{\mu}g/mL$. The protective effects of extract / fractions of Persicaria hydropiper L. on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The Persicaria hydropiper L. extracts suppressed photohemolysis in a concentration dependent manner ($1\;{\sim}\;10\;{\mu}g/mL$). Inhibitory effects ($IC_{50}$) on tyrosinase of aglycone fraction of Persicaria hydropiper L. extracts was $8.90\;{\mu}g/mL$. Inhibitory effects ($IC_{50}$) on elastase of aglycone fraction of Persicaria hydropiper L. extracts was $2.37\;{\mu}g/mL$. These results indicate that extract / fractions of Persicaria hydropiper L. can function as antioxidants in biological systems, particularly skin exposed to UV radiation by anti-oxidative activity and protect cellular membranes against ROS. Persicaria hydropiper L. extract / fractions could be used as a new cosmeceutical for whitening and anti-wrinkle products.

Effect of Nano-sized Carbon Black Particles on Lung and Circulatory System by Inhalation Exposure in Rats

  • Kim, Jong-Kyu;Kang, Min-Gu;Cho, Hae-Won;Han, Jeong-Hee;Chung, Yong-Hyun;Rim, Kyung-Taek;Yang, Jeong-Sun;Kim, Hwa;Lee, Moo-Yeol
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.282-289
    • /
    • 2011
  • Objectives: We sought to establish a novel method to generate nano-sized carbon black particles (nano-CBPs) with an average size smaller than 100 nm for examining the inhalation exposure risks of experimental rats. We also tested the effect of nano-CBPs on the pulmonary and circulatory systems. Methods: We used chemical vapor deposition (CVD) without the addition of any additives to generate nano-CBPs with a particle size (electrical mobility diameter) of less than 100nm to examine the effects of inhalation exposure. Nano-CBPs were applied to a nose-only inhalation chamber system for studying the inhalation toxicity in rats. The effect on the lungs and circulatory system was determined according to the degree of inflammation as quantified by bronchoalveolar lavage fluid (BALF). The functional alteration of the hemostatic and vasomotor activities was measured by plasma coagulation, platelet activity, contraction and relaxation of blood vessels. Results: Nano-CBPs were generated in the range of 83.3-87.9 nm. Rats were exposed for 4 hour/day, 5 days/week for 4 weeks to $4.2{\times}10^6$, $6.2{\times}10^5$, and $1.3{\times}10^5$ particles/$cm^3$. Exposure of nano-CBPs by inhalation resulted in minimal pulmonary inflammation and did not appear to damage the lung tissue. In addition, there was no significant effect on blood functions, such as plasma coagulation and platelet aggregation, or on vasomotor function. Conclusion: We successfully generated nano-CBPs in the range of 83.3-87.9 nm at a maximum concentration of $4.2{\times}10^6$ particles/$cm^3$ in a nose-only inhalation chamber system. This reliable method can be useful to investigate the biological and toxicological effects of inhalation exposure to nano-CBPs on experimental rats.

Tillage practices and fertilization effects on growth and nitrogen efficiency in soybean

  • Roy, Swapan Kumar;Jung, Hyun-Jin;Yoo, Jang-Hwan;Kwon, Soo Jeong;Yang, Jong-Ho;Kim, Sook-Jin;Chung, Keun-Yook;Kim, Hong-Sig;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.356-356
    • /
    • 2017
  • A field experiment was performed to evaluate the effects of tillage systems and fertilizer management on yield and nutrient uptake in Soybean. The plant height, fresh weight and dry weight of conventional tillage were much higher those observed for no-tillage. Significant differences in plant height were observed under tillage practices combined with fertilizer treatment. However, the greatest plant height (128.47 cm) was observed in conventional tillage with chemical fertilizer, and the lowest (45.4 cm) was observed in the no-tillage with green manure treatment. The highest fresh weight (172.4 g) and dry weight (44.1 g) were observed from the no-tillage chemical treatment in the late flowering stage of soybean. The plant concentration of nitrate was higher (2.29%) in no-tillage with green manure than it was with chemical fertilization. However, nitrogen increased steadily in all treatments, and the highest quantity of total nitrogen (476.7 Kg/ha) was observed in no-tillage with green manure. The N content in the soil decreased gradually just after the vegetative stage. Tillage practices and additional fertilizer application had an adverse effect on the uptake of N, P and K in soybean seeds. The nitrogen concentration in seeds was found to be increased in the no-tillage with green manure treatment. The uptake of more nitrogen induced a better yield. Thus, the no-tillage with green manure treatment had the greatest yield, although no significant difference was observed among foliar-applications and additional fertilization. Additionally, the phosphorus and potassium concentrations in seeds remained the same between the conventional tillage and no-tillage treatments. The results obtained in this study indicate that no-tillage strategies with fertilizers may influence the growth characteristics and mineral uptake in soybean.

  • PDF

Effect of Juvenile Fish Predation on the Zooplankton Community in the Large Regulated Nakdong River, South Korea (저수지화 성향을 띤 낙동강에서 치어 섭식이 동물플랑크톤 군집에 미치는 영향)

  • Chang, Kwang-Hyeon;Hwang, Soon-Jin;Jang, Min-Ho;Kim, Hyun-Woo;Jeong, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.310-318
    • /
    • 2001
  • In the large regulated Nakdong River, the Predation effect of juvenile fish on the zooplankton community was evaluated by gut and stomach analyses of fish in 1999. Juvenile fish of five species showed high density from May to early June when river discharge was low and water body became stagnant. During this period, large rotifers, Asplanchna spp. and Brachionus spp. declined and the decrease of cladoceran (Moina micrura and Bosminopsis deitersi) density was also obeserved. At this time, small rotifers including Polyarthra spp. reached maximum density. Gut analysis of fish demonstrated that small-sized juvenile fish (< 15 mm in total length)preferred large rotifers as well as cladocerans, while large sized fish (> 15 mm)selected only cladocerans. On the other hand, juvenile Micropterus salmoides of which size was larger than other juvenile fish consumed not only zooplankton but also other small juvenile fish. Based on these results, the decline of large rotifers and cladocerans during early summer in the river seems to be result of predation by juvenile fish. However, the period when juvenile fish maintained their high density was as short as one month and the decreased density of cladocera rapidly recovered as soon as juvenile fish became scarce. Such a short period of juvenile fish devel-opment in the river can be attributed to the consumption of juvenile fish by the young-of-the-year cohorts as well as adults of M. salmoides. The high trophic state of the river might permit the rapid recovery of the cladoceran community. The predation impact of juvenile fish in the Nakdong River seems to be affected by the existence of piscivore as well as high trophic status.

  • PDF

Seasonal Fluctuation of Chlorophyll a Concentration in the Size Fractionation of Phytoplankton in Daechung Reservoir (대청호에서 식물플랑크톤 크기에 따른 엽록소 농도의 계절적 변화)

  • Mun, Jong-Jeon;Lee, Sang-Wook;Hwang, Soon-Jin;Oh, In-Hye
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.277-284
    • /
    • 2001
  • Since a substantial part of the total planktonic primary production is due to the activity of the picoplankton, seasonal change of chlorophyll a in the picoplankton, nanoplankton and microplankton was determined at four locations in Daechung Reservoir from September in 1998 to September in 1999. Chlorophyll a concentration (<$200\;{\mu}m$) was $0.7{\sim}36.9\;{\mu}g/l$ In TAE (Taejeon site), $0.5{\sim}23.5\;{\mu}g/l$ in MAN (Man site), $1.9{\sim}20.1\;{\mu}g/l$ in HOE (Hoenam site), and $0.5{\sim}17.4\;{\mu}g/l$ in DAM (Dam site). Generally it was observed the highest concentration of chlorophyll a was in September and the lowest in April to June. The relative contribution of chlorophyll a of each fraction was changed dramatically through the year. Relative contribution of chlorophyll a of microplankton was high from June to October, and low in March in all locations except HOE. However chlorophlyll a concentration of picoplankton fraction was $2.0{\sim}24.3%$ of total chlorophyll a (<$200\;{\mu}m$) through the year and did not show any dramatic changes at all locations.

  • PDF

Characterization of peptide:N-glycanase from tomato (Solanum lycopersicum) fruits (토마토 (Solanum lycopersicum) 과육의 숙성정도에 따른 peptide:N-glycanase 발현 분석)

  • Wi, Soo Jin;Park, Ky Young
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.159-167
    • /
    • 2014
  • In eukaryotes, proteins that are secreted into ER are post-translationally modified by N-glycosylation, the patterns of which are significantly different between plant and animal cells. Biotechnology industry has already produced a number of therapeutic glycoproteins in plant cells. However, the aberrant glycosylation of therapeutic recombinant proteins in plant systems can cause immune problems in humans. Therefore, it is important to develop strategies for producing non-glycosylated forms to preserve biological activity and native conformation by a peptide: N-glycanase (PNGase). In this study, we try to isolate PNGase T gene from tomato, which can use as a platform plant for biotechnology industry. We isolated a cDNA (GenBank Accession number KM401550) from tomato leaves with 1,767 bp, which encoded a polypeptide of 588 amino acids with a predicted molecular mass of 65.8 kDa. We also investigated the expression patterns of PNGase T during fruit ripening of tomato. The transcripts of PNGase T, which were constitutively induced in tomato fruit from green stage, were significantly increased and reached a peak at orange stage. After which, those transcripts were continuously reduced. The expression pattern of PNGase T was coincided well with transcripts profiles of metacaspase gene, LeMCA, and senescence-related gene members of ACC synthase, LeACS2, LeACS4, and LeACS6, for ethylene biosynthesis during fruit ripening. These results suggest that PNGase T is involved in a de-glycosylation process associated with senescence and fruit ripening.

Comparative Studies of Protein Modification Mediated by Fenton-like Reactions of Iron, Hematin, and Hemoglobin: Generation of Different Reactive Oxidizing Species

  • Kim, Young-Myeong;Kim, Sung-Soo;Kang, Gu;Yoo, Yeong-Min;Kim, Ki-Mo;Lee, Mi-Eun;Han, Jeong-A;Hong, Sun-Joo
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.161-169
    • /
    • 1998
  • TThe reactive oxygen species oxidatively modify the biological macromolecules, including proteins, lipids, and nucleic acids. Iron- and heme-mediated Fenton-like reactions produce different pro-oxidants. However, these reactive products have not been clearly characterized. We examined the nature of the oxidizing species from the different iron sources by measuring oxidative protein modification and spectroscopic study. Hemoglobin (Hb) and methemoglobin (metHb) were oxidatively modified in $O{\array-\\\dot{2}}$ and $H_{2}O_{2}$ generating systems. Globin and bovine serum albumin (BSA) were also modified by iron, iron-EDTA, hematin, and Hb in an $O{\array-\\\dot{2}}$ generating system. In a $H_{2}O_{2}$ generating system, the iron- and iron-EDTA-mediated protein modifications were markedly reduced while the Hb-and hematin-mediated modifications were slightly increased. In the $O{\array-\\\dot{2}}$ generating system, the iron- and iron-EDTA-mediated protein modifications were strongly inhibited by superoxide dismutase (SOD) or catalase, but heme- and Hb-mediated protein modifications were inhibited only by catalase and slightly increased by SOD. Mannitol, 5,5-dimethyl-l-pyrroline-N-oxide (DMPO), deoxyribose, and thiourea inhibited the iron-EDTA-mediated protein modification. Mannitol and DMPO, however, did not exhibit significant inhibition in the hematin-mediated modification. Desferrioxamine (DFO) inhibited protein modification mediated by iron, but cyanide and azide did not, while the hematin-mediated protein modification was inhibited by cyanide and azide, but not significantly by DFO. The protein-modified products by iron and heme were different. ESR and UV-visible spectroscopy detected the DMPO spin adduct of the hydroxyl radical and ferryl ion generated from iron-EDTA and metHb, respectively. These results led us to conclude that the main oxidizing species are hydroxyl radical in the iron-EDTA type and the ferry I ion in the hematin type, the latter being more effective for protein modification.

  • PDF

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Biophoton Emission as a Biomarker of Mouse Fatty Liver induced by Carbon Tetrachloride (사염화탄소를 이용한 마우스 지방간에서의 새로운 생체발광 측정법)

  • 김정대;임재관;최준호;이병천;유혜란;박대훈;천병수;소광섭
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 2004
  • Recently the measurement of biophoton emission has attracted increasing attention in the study on physiological state of biological systems. We report the measurements of biophoton emission from the mouse fatty liver induced by carbon tetrachloride, CCl$_4$. The hepatotoxin, CCl$_4$ in olive oil, was injected intraperitoneally into two groups of ICR mice which were made of 6 mice in each group. The control groups corresponding to the treated groups were prepared with the injections of olive oil only. After the injections, livers of two groups were extracted and measured biophoton emission in 24 hours and 72 hours later, respectively. We also extracted the plasma in the blood and measured the transaminase activity. Results show that biophoton emission from the livers in 24-hour treated group is 69.3${\pm}$21.2 counts/min/$\textrm{cm}^2$, which is two times more larger than that in 24-hour control group, 29.5${\pm}$5.9 counts/min/$\textrm{cm}^2$ Biophoton emission from the livers in 72-hour treated group is 37.0${\pm}$14.8 counts/min/$\textrm{cm}^2$. These biophoton results correlate with those of the biochemical assays. We conclude that biophoton emission can be used as a biomarker of mouse fatty liver induced by CCl$_4$.

Optical Multi-Normal Vector Based Iridescence BRDF Compression Method (광학적 다중 법선 벡터 기반 훈색(暈色)현상 BRDF 압축 기법)

  • Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.184-193
    • /
    • 2010
  • This paper proposes a biological iridescence BRDF(Bidirectional Reflectance Distribution Function) compression and rendering method. In the graphics technology, iridescence sometimes is named structure colors. The main features of these symptoms are shown transform of color and brightness by varying viewpoint. Graphics technology to render this is the BRDF technology. The BRDF methods enable realistic representation of varying view direction, but it requires a lot of computing power because of large data. In this paper, we obtain reflection map from iridescence BRDF, analyze color of reflection map and propose representation method by several colorfully concentric circle. The one concentric circle represents beam width of reflection ray by one normal vector. In this paper, we synthesize rough concentric by using several virtually optical normal vectors. And we obtain spectrum information from concentric circles passing through the center point. The proposed method enables IBR(image based rendering) technique which results is realistic illuminance and spectrum distribution by one texture from reduced BRDF data within spectrum.