• Title/Summary/Keyword: Biological minimum temperature

Search Result 92, Processing Time 0.03 seconds

Seasonal Production Performance of Angora Rabbits under Sub-temperate Himalayan Conditions

  • Bhatt, R.S.;Sharma, S.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.416-420
    • /
    • 2009
  • An experiment of one-year duration was conducted on sixteen adult male German Angora rabbits under sub-temperate Himalayan conditions, to assess the effect of seasons on their body weight, wool production and quality, plane of nutrition and the digestibilities of nutrients. The daily meteorological attribute viz. minimum and maximum temperature; relative humidity and rainfall were recorded during winter (October to March), summer (April to June) and rainy (July to September) seasons. Biological parameters viz. body weight at the time of shearing, wool yield of individual rabbit, quality attributes of wool, fortnightly dry matter intake, chemical composition of feed and fodder and digestibilities of nutrients were recorded. Average minimum and maximum ambient temperature during winter, summer and rainy seasons were 4.6${\pm}$1.9 and 21.4${\pm}$2.8; 13.6${\pm}$2 and 30.3${\pm}$2; and 20.0${\pm}$1.4 and $31.0{\pm}1.8^{\circ}C$, respectively. The average relative humidity and total rainfall during winter, summer and rainy season were 69.5${\pm}$2.9% and 74.7${\pm}$21.8 mm; 58.6${\pm}$2.2% and 38.1${\pm}$18.1 mm; and 69${\pm}$4.2% and 104.0${\pm}$43.7 mm, respectively. The body weight of rabbits increased during all seasons, however, the maximum average daily weight gain of 3.47${\pm}$0.1 g was observed during the rainy season. The wool yield differed significantly (p$\leq$0.05) among different seasons with highest (140.4${\pm}$10 g) and lowest (108.5${\pm}$6.9 g) during winter and summer, respectively. The wool yield during the rainy season was 123.3${\pm}$5.2 g. The wool quality attributes revealed non-significant differences for staple length, fiber diameter, medulation percent, percent pure fibers and percent guard hairs. Plane of nutrition revealed significant (p$\leq$0.05) differences for concentrate intake. The concentrate intake was highest during winter (124.4${\pm}$2.6 g) followed by summer (86.8${\pm}$8.9 g) and rainy (80.7${\pm}$11.8 g) seasons. The reverse trend was observed in roughage intake with significantly (p${\leq}$0.05) lower intake during winter and highest during summer months. As a result total dry matter intake during different seasons was similar. Significant differences (p${\leq}$0.05) were observed for digestibilities of crude protein, crude fiber, ether extract, acid detergent fiber and cellulose. Digestibility of crude protein was highest during winter whereas the digestibilities of crude fiber, ether extract, acid detergent fiber and cellulose remained higher during the rainy season. During the winter season, the dry matter used for producing 100 g of wool was substantially lower than during other seasons and was concluded to be the best season for production of Angora wool under subtemperate Himalayan conditions.

Effects of Water Temperatures on the Larval Development and Spat Growth of the Cockle Shell, Fulvia mutica (새조개 (Fulvia mutica) 난 발생 및 유생 성장에 미치는 수온의 영향)

  • Kim, Jae-Min;Kim, Sang-Chel;Hur, Jun-Wook;Lim, Sang-Min;Kim, Young-Hun;Seon, Seung-Cheon;Kang, Kyoung-Ho
    • The Korean Journal of Malacology
    • /
    • v.28 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • The effect of water temperature on spawning induction, larval development, spat settling and its growth of the cockle shell, Fulvia mutica, were investigated to obtain the basic data for effective seed production. The eggs, which were randomly divided into 6 groups of water temperatures of 14, 17, 20, 23, 26 and $29^{\circ}C$, were transferred into 1 L beaker, respectively. The relationships between the water temperature and the required time (1/h, hour) by each egg developmental stage were calculated. Biological minimum water temperature and the cumulative water temperature until egg development of the veliger stage were calculated to be $0.1^{\circ}C$ and $397.3^{\circ}C$, respectively. The optimal water temperature for developmental bioassay of F. mutica was clarified to be $23^{\circ}C$. The required time for the embryo to become veliger larvae was 20 hours at $23^{\circ}C$.

The Solubility of Nitrogen and Phytate According to the Isolation of Perilla Seed Protein (들깨(Perilla ocimoides L.)종자(種字)의 단백질(蛋白質) 분리(分離)에 따른 Phytate와 질소(窒素)의 용해도(溶解度))

  • Yoon, Hyung-Sik;Lee, Jae-Ha
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.321-326
    • /
    • 1989
  • Nitrogen and phytate solubility of perilla seed flour were influenced by the following factors: pH, centrifugal force, temperature and the presence of salt. The nitrogen solubility of perilla seed flour was minimum$(17.1{\sim}18.0%)$ at the pH range of $(4.0{\sim}5.0)$ and maximum(92.3%) at pH 11.0, while phytate solubility was the highest(48.5%) at pH 4.8 and lowest(8.3%) at pH 11.0. The phytic acid content in the extract decreased with an increase in centrifugal force. However, the nitrogen content was not affected by centrifugal force. The solubility of nitrogen and phytate gradually increased as the temperature was increased from $5^{\circ}C$ to $60^{\circ}C$ The addition of calcium$(0{\sim}50mM)$ at pH 5.0 decreased the phytate solubility, but increased nitrogen solubility. The solubility of nitrogen and phytate of perilla seed protein isolate was gradually increased as pH raised further. The protein and phytate contents of the perilla seed protein isolate were 1.1 and 89.6%, respectively, compared to 5.0 and 60.1% for perilla seed flour.

  • PDF

Early Diagnostic Method of Avian Influenza Virus Subtype Using Ultra Real-Time PCR (Ultra Real-Time PCR을 활용한 Avian Influenza Virus Subtype의 조기진단법)

  • Kim, Sang-Tae;Kim, Young-Kyoon;Kim, Jang-Su
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • This ultra real-time PCR (UPCR) based diagnosis system for avian influenza A virus (AIV) subtype was designed. The target primer in this study was derived from H5N1 subtype-specific 133 bp partial gene of hemagglutinin (HA), and was synthesized by using PCR-based gene synthesis on the ground of safety. UPCR was operated by Mini-Opticon Q-PCR Quantitative Thermal Cycler using aptamer-based molecular beacon, total 10 ${\mu}l$ of reaction mixture with extraordinarily short time in each steps in PCR. The detection including UPCR and analysis of melting temperature was totally operated within 15 min. The AIV-specific 133 bp PCR product was correctly amplified until 5 molecules of HA gene as minimum of templates. This kind of PCR was drafted as UPCR in this study and it could be used to detect not only AIV subtype, but also other pathogens using UPCR-based diagnosis.

Varietal Difference in Growth, Yield and Grain Quality of Rice Grown at Different Altitudinal Locations

  • Kwon Young-Rip;Lee Jin-Jae;Choi Dong-Chil;Choi Joung-Sik;Choi Yeong-Geun;Yun Song-Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.2
    • /
    • pp.130-136
    • /
    • 2006
  • Growth and quality of rice are affected by various factors including the location of cultivation. This study was conducted to investigate the effects of altitudinal locations on the growth and yield-related components of rice. Nineteen Japonica type varieties were grown at Iksan (altitude, 10 m), Imsil (altitude, 150 m), Jinan (altitude, 275 m) and Jangsu (altitude, 430 m) at a similar latitude in Jeonbuk province in the south western Korea. Minimum air temperature showed a strong negative correlation with altitude. The morphological traits and yield-and quality-related components were analyzed. Longer days to heading was required at higher altitudes. However, culm length, panicle length, panicle number, grain number and rice yield were reduced at higher altitudes. Protein content of brown rice increased but fatty acid content decreased at higher altitudes. Amylose content was affected by neither the altitude nor the ecotype. Palatability of polished rice tends to be improved at higher altitudes and in early-maturing ecotypes but its relationships with altitude and ecotype were not significant. Head rice ratio was lower at higher altitudes but broken rice ratio vise versa. These results indicate that growth and quality of rice are affected significantly by changes in temperatures at the locations of different altitude. Also, the characters related to yield and quality of rice often respond incompatibly to the changes in altitudes. These results could provide valuable information for the strategic planning of rice production in geographically diverse areas.

Development of an ACL Anchor: Effects of the Design Parameters on the Performance of a New Anterior Cruciate Ligament Fixation Device

  • Kim, Jong-Dae;Oh, Chae-Youn;Kim, Cheol-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • We investigated the biomechanical properties of a newly designed self-expansion type anterior cruciate ligament (ACL) anchor. The ACL anchor consists of the ring section giving the elastic force, the wedge for maintaining in contact with the femur tunnel wall and the link suspending hamstring graft or artificial ligament. The main design parameters that determine the performance of this device were the expansion angle (${\theta}$) and the thickness ($t_R$). The Ti6Al4V anchors were heated after inserting in a jig for 1 hour at $800^{\circ}C$ in a protective argon gas atmosphere and allowed to cool to room temperature in the furnace. In order to investigate the influence of the expansion angle and the thickness of the ring on the biomechanical properties of the anchor, the maximum pull-out load, stiffness and slippage of the ACL anchor were measured using the pull-out tester, and statistical analyses were also executed. The present results showed that the design parameters gave a significant effect on the performance of the self- expansion type of anchor. The pull-out load of the ACL anchors significantly increased as the thickness of the ring section was increased, having a similar trend for both expansion angles. The ACL anchor showed about 2.5 times higher values of the pull-out load than that of the minimum load (500N)required for the "accelerated rehabilitation". The optimum ${\theta}$ and $t_R$ values of this ACL anchor were suggested to have sufficient resistance against the pull-out force, high stiffness and relatively low slippage after ACL reconstruction.

Estimation Suspended Solids Concentration of the Doam Reservoir under Dry and Wet Weather Conditions (강수조건에 따른 도암호 부유물질 거동 평가)

  • Choi, Jae-Wan;Shin, Dong-Seok;Lim, Kyoung-Jae;Lee, Sang-Soo;Kang, Min-Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.113-121
    • /
    • 2012
  • BACKGROUND: The Doam watershed in Korea has been managed for the reduction and the prevention of non-point source pollution since 2007. Especially, the water quality of the Doam reservoir is a primary issue related to the Doam dam reoperation. We have carried out the modeling to evaluate the water quality based on suspended solids (SS) of the Doam watershed and the Doam reservoir. Two powerful hydrological and water quality models (HSPF and CE-QUAL-W2) were employed to simulate the combined processes of water quantity and quality both in the upland watershed of the Doam reservoir and the downstream waterbody. METHODS AND RESULTS: The HSPF model was calibrated and validated for streamflow and SS. The CE-QUAL-W2 was calibrated for water level, water temperature, and SS and was validated for the only water level owing to data lack. With the parameters obtained through the appropriate calibration, SS concentrations of inflow into and in the Doam reservoir were simulated for three years (2008, 2004 and 1998) of the minimum, the average, and the maximum of total annual precipitation during recent 30 years. The annual average SS concentrations of the inflow for 2008, 2004, and 1998 were 8.6, 10.9, and 18.4 mg/L, respectively and those in the Doam reservoir were 9.2, 13.8, and 21.5 mg/L. CONCLOUSION(s): The results showed that more intense and frequent precipitation would cause higher SS concentration and longer SS's retention in the reservoir. The HSPF and the CE-QUAL-W2 models could represent reasonably the SS from the Doam watershed and in the Doam reservoir.

Ecological Survey of the Nakdong River Estuary (낙동강 하구 부근의 해양 환경 조사 연구)

  • 박청길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.4
    • /
    • pp.1-20
    • /
    • 1986
  • Physical, chemical and biological surveys on Nakdong River estuary were made from October, 1985 to September, 1986. 1. For all the seasons except summer, the sea surface temperature in northwest area of the line which linked from Seo Island to Jisim Island was I-2$^{\circ}$C lower than in southeast area, but in summer the sea surface temperature in northwest area was I-2$^{\circ}$C higher than in southeast area. On the contrary, bottom temperature of coastal area was 1$^{\circ}$C higher than that of oceanic area except winter. 2. Surface salinity in summer and fall has minimum value of 1. 9%0 and maximum value of 32.9%0. This large variation was caused by the runoff of the Nakdong River. Effect of less saline Nakdong River water in northwest area of the line which linked from Seo Island to Jisim Island was greater than in southeast area. A strong current rip always formed near this line. 3. The yellowish-green colored zone was observed in the Nakdong River estuary throughout the year by influence of river discharge. The characteristics of the water quality in the zone have shown that the water color was grade 7 by the Forel water-color meter, transparency was less than 4 m, and concentration of suspended solids was more than 5 mg/1. This water body was in the state of eutrophication in terms of chlorophyll-a and inorganic nitrogen concentration during summer season. 4. During the study period, total 276 taxa were identified. Most of them were diatoms and dinoflagellates which consisted of 97.5%. The component ratio of the above two groups was 84.4% and 13.1 % respectively. Diatoms were plentiful in December and dinoflagellates in July. Dominant species were Nitzschia seriata in October, Thalassiosira rotula in December, Skeletoncma costatum in April, and Nitzschia longissima in July. 5. A total of 47 zooplankton taxa was identified from the samples collected. Copepods were numerically the most important components of zooplankton communities in the study area. The domir:ant copepod species were Paracalanus parvus, Acartia clausi and Temora turbinata. Noctiluca scintillans was the next important component. The other zooplankton with minor abundance were Cladocera. Sagitta spp., Cnidaria, Mysidacea, Lucifer spp. and Amphipoda. 6. During the study period, fishes from 47 families and 87 species were sampled in th~ study area. The four most abundant fish species were Rep~mucen//'s valencicnnei, Leiognathus n~cha!is, Amblychaeturicllthys hexanema and Sardirel/a zun:zsi. The fish species of the secondary importance in abundance were Cynoglossus joyneri, Sillago sihama, Engra~lis japonicus, Encdrias nebulos'l, Acanthogobius flavimanus, Trichiurus lepturus, LiParis tanai/ai, Cynagloss//'s interruptus, Aj)ogon line:z!us, Thrissz la 1l.'1la!ensis, and Limanda yokohamac.

  • PDF

Vertical Distribution of Vascular Plant Species along an Elevational Gradients in the Gyebangsan Area of Odaesan National Park (오대산국립공원 계방산지구 관속식물의 고도별 수직분포)

  • An, Ji-Hong;Park, Hwan-Jun;Nam, Gi-Heum;Lee, Byoung-Yoon;Park, Chan-Ho;Kim, Jung-Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.381-402
    • /
    • 2017
  • In order to investigate distribution of vascular plants along elevational gradient in the Nodong valley of Gyebangsan, vascular plants of eight sections with 100-meter-high were surveyed from the Auto-camping site (800 m) to the top of a mountain (1,577 m). There were a total of 382 taxa: 89 families, 234 genera, 339 species, 7 subspecies, 34 varieties, and 2 forms. As a result of analyzing the pattern of species richness, it showed a reversed hump-shaped with minimum richness at mid-high elevation. As a result of analyzing habitat affinity types, the proportion of forest species increased with increasing elevation. But, the ruderal species decreased with increasing elevation, and then increased at the top of a mountain. As for the proportion of life forms, the annual herbs gradually decreased with increasing elevation, but it did not appear between 1,300 m and 1,500 m and then increased at the top of a mountain. The trees gradually increased with elevation and decreased from 1,300~1,400 m. The vascular plants divided into four groups by using DCA. The arrangement of each stands was arranged in order from right to left on the I axis according to the elevation. The distribution of vascular plants is determined by their own optimal ranges of vegetation. Also, rise in temperature due to climate change affects the distribution of vascular plants, composition, and diversity. Therefore, continuous monitoring is necessary to confirm ecological and environmental characteristics of vegetation, distribution ranges, changes of habitat. Furthermore, plans for conservation and management based on these data should be prepared according to climate change.

Development of Economic Culture System Using Wastewater for Microalgae in Winter Season (폐수를 이용한 겨울철 경제적 미세조류 배양 시스템의 개발)

  • Lee, Sang-Ah;Lee, Changsoo;Lee, Seung-Hoon;An, Kwang-Guk;Oh, Hee-Mock;Kim, Hee-Sik;Ahn, Chi-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.58-67
    • /
    • 2014
  • The outdoor mass cultivation is not possible for microalgae in Korea all year round, due to cold winter season. It is not easy to maintain proper level of productivity of microalgae even in winter. To prevent a drastic decrease of temperature in a greenhouse, two layers were covered additionally, inside the original plastic layer of the greenhouse. The middle layer was made up of plastic and the inner layer, of non-woven fabric. Acrylic transparent bioreactors were constructed to get more sunlight, not only from the upper side but also from the lateral and bottom directions. In winter at freezing temperatures, six different culture conditions were compared in the triply covered, insulated greenhouse. Wastewater after anaerobic digestion was used for the cultivation of microalgae to minimize the production cost. Water temperature in the bioreactors remained above $10^{\circ}C$ on average, even without any external heating system, proving that the triple-layered greenhouse is effective in keeping heat. Algal biomass reached to 0.37g $L^{-1}$ with the highest temperature, in the experimental group of light-reflection board at the bottom, with nitrogen and phosphorus removal rate of 92% and 99%, respectively. When fatty acid composition was analyzed using gas-chromatography, linoleate (C18 : 3n3) occupied the highest proportion up to 61%, in the all experiment groups. Chemical oxygen demand (COD), however, did not decrease during the cultivation, but rather increased. Although the algal biomass productivity was not comparable to warm seasons, it was possible to maintain water temperature for algae cultivation even in the coldest season, at the minimum cost.