• Title/Summary/Keyword: Biological kinetic parameters

Search Result 55, Processing Time 0.02 seconds

Evaluation of Biological Kinetic Parameters in the Granular Sludge (입상슬러지의 동력학적 인자 산정)

  • 이재관;양병수
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.201-214
    • /
    • 1995
  • Design approach of upflow Anaerobic Sludge Blanket(UASB) process based on the biological kinetic parameters are known to be very difficult since the characteristics of the granular slut비e depends on the type of wastewater and size distribution of the granular sludge also depends on the upflow velocity in the UASB reactors. Furthermore, industrial wastewater containing toxic substances has been treated by UASB process without the clear knowledge of toxic effects on the granular slut형e. Hence, the present research was aimed on the intensive evaluation of biological kinetic parameters of the granular sludge in UASB reactor with and without toxic substance of 2, 4-dichlorophenol in order to present the basic design measures for UASB process design. The results could be summarized as follows. The biological kinetic parameters(k and Ks) considerably varied with the granular size of the sludge. Generally, 연e k and ks values of the granular sludge increased with the particle size of the granule. The biological kinetic parameters(k and Ks) of the granular sludge obtained from batch test were not applicable to design purpose of UASB process due to substrate diffusional limitation into the granular sludge in the completely mixed UASB reactors. The toxic effects on k and Ks greatly varied with the granular sixte. And as the toxicant concentration increased, the k value decreased while the Ks value increased. Inhibition constant(hi) for k with the toxicant of 2, 4-dichlorophenol varied from 0.5 to 2.3 depending on the granular sizes while the inhibition constant(Ki) for Ks varied from 20.7 to 80.1, showing the mixed inhibition.

  • PDF

Modeling and Dynamic Simulation for Biological Nutrient Removal in a Sequencing Batch Reactor(I) (연속 회분식 반응조에서 생물학적 영양염류 제거에 대한 모델링 및 동적 시뮬레이션(I))

  • Kim, Dong Han;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.42-55
    • /
    • 1999
  • A mathematical model for biological nutrient removal in a sequencing batch reactor process, which is based on the IAWQ Activated Sludge Model No. 2 with a few modifications, has been developed. Twenty water quality components and twenty three kinetic equations are incorporated in the model. The model is structured in the matrix form based on the law of mass conservation using stoichiometry and kinetic equations. Stoichiometric coefficients and kinetic parameters included in the model equations are chosen from the literature. A multistep predictor-corrector algorithm of variable step-size is adopted for solving the vector nonlinear ordinary differential equations. The simulation for experimental results is conducted to evaluate the validity of the model and to calibrate coefficients and parameters. The simulation using the model well represents the experimental results from laboratory. The mathematical model developed in this study may be utilized for the design and operation of a sequencing batch reactor process under the steady and unsteady-state at various environmental conditions.

  • PDF

The Estimation of Bio-kinetic Parameters using Respirometric Analysis (산소이용률을 이용한 생물학적 동력학 계수 추정)

  • Choung, Youn-Kyoo;Kim, Han-Soo;Yoo, Sung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2000
  • In order to predict the performance of biological wastewater treatment plant, the kinetic parameters and stoichiometric coefficient must be known. The theories and experimental procedures for determining the biological kinetic parameters were discussed in this study. Respirometric analysis in the batch reactor was carried out for the experimental assessment of kinetic parameters. A simple procedure to estimate kinetic parameters of heterotrophs and autotrophs under aerobic condition was presented. The difficulties in the interpretation of COD and VSS measurements encouraged the conversion of respirometric data to growth data. Maximum specific growth rate, yield coefficient, half saturation constant and decay rate of heterotrophic biomass were obtained from OUR(Oxygen Uptake Rate) data. Maximum specific growth rate of autotrophic biomass was obtained from the increase of nitrate concentration. The aim of this paper is to estimate the kinetic parameters of heterotrophic and autotrophic biomass by means of the respirometric analysis of activated sludge behavior in the batch reactors. These procedures may be used for the activated sludge modeling with complex kinetic parameters.

  • PDF

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

Determination of Biological kinetic Parameters for Pharmaceutical Wastewater (제약 폐수의 생물학적 동력학 계수 측정)

  • Lee Young-Rak;Choi Kwang-Keun;Lee Jin-Won
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.49-53
    • /
    • 2006
  • The aim of this research is to estimate the values of biological kinetic parameters of pharmaceutical wastewater for understanding biochemical properties. Maximum specific growth rate (${\mu}m$), yield coefficient (Y), and half-velocity coefficient (KS) were determined using oxygen uptake rate (OUR), and the results were 10.49/day (0.437/hr), 0.655, and 38.89 mg/L, respectively. Measured ${\mu}max$ by nonlinear regression of Monod equation was 10.63/day (or 0.443/hr), and this value was similar with above result. These parameters may be used to increase efficiency of pharmaceutical wastewater treatment and to determine amount of oxygen needed to removal BOD and dissolved oxygen in activated sludge process.

OPTIMIZATION OF PARAMETERS IN MATHEMATICAL MODELS OF BIOLOGICAL SYSTEMS

  • Choo, S.M.;Kim, Y.H.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.355-364
    • /
    • 2008
  • Under pathological stress stimuli, dynamics of a biological system can be changed by alteration of several components such as functional proteins, ultimately leading to disease state. These dynamics in disease state can be modeled using differential equations in which kinetic or system parameters can be obtained from experimental data. One of the most effective ways to restore a particular disease state of biology system (i.e., cell, organ and organism) into the normal state makes optimization of the altered components usually represented by system parameters in the differential equations. There has been no such approach as far as we know. Here we show this approach with a cardiac hypertrophy model in which we obtain the existence of the optimal parameters and construct an optimal system which can be used to find the optimal parameters.

  • PDF

Determining Kinetic Parameters and Stabilization Efficiency of Heavy Metals with Various Chemical Amendment (중금속 안정화제의 반응 매개변수 결정 및 중금속 안정화 효율성 평가)

  • Oh, Se-Jin;Kim, Sung-Chul;Kim, Tae-Hee;Yeon, Kyu-Hun;Lee, Jin-Soo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1063-1070
    • /
    • 2011
  • In this study, total of 5 different chemical amendments were evaluated for determining kinetic parameters and stabilization efficiency of heavy metals in aqueous phase. Standard solution of Cd and Pb ($100mg\;L^{-1}$) was mixed with various ratio of amendments (1, 3, 5, 10%) and heavy metal stabilization efficiency was monitored for 24hrs. All examined amendments showed over 90% of removal efficiency for both Cd and Pb except zerovalent iron (ZVI) for Cd (43-63%). Based on result of heavy metal stabilization efficiency, it was ordered as $CaCO_3$ > Dolomite > Zeolite > Steel slag > ZVI for both Cd and Pb in aqueous phase. For kinetic study, first order kinetic model was adapted to calculate kinetic parameters. In terms of reaction rate constants (k), zeolite showed the fastest reaction rate (k value from 0.4882 for 1% to 2.0105 for 10%) for Cd and ZVI (k value from 0.2304 for 1% to 0.5575 for 10%) for Pb. Considering reaction rate constant and half life for heavy metal stabilization, it was ordered as Zeolite > $CaCO_3$ > Dolomite > Steel slag > ZVI for Cd and $CaCO_3$ > Dolomite > Steel slag > Zeolite > ZVI for Pb. Overall result in this study can be interpreted that lime containing materials are more beneficial to remove heavy metals with high efficiency and less time consuming than absorbent materials.

Symbolic-numeric Estimation of Parameters in Biochemical Models by Quantifier Elimination

  • Orii, Shigeo;Anai, Hirokazu;Horimoto, Katsuhisa
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.272-277
    • /
    • 2005
  • We introduce a new approach to optimize the parameters in biological kinetic models by quantifier elimination (QE), in combination with numerical simulation methods. The optimization method was applied to a model for the inhibition kinetics of HIV proteinase with ten parameters and nine variables, and attained the goodness of fit to 300 points of observed data with the same magnitude as that obtained by the previous optimization methods, remarkably by using only one or two points of data. Furthermore, the utilization of QE demonstrated the feasibility of the present method for elucidating the behavior of the parameters in the analyzed model. The present symbolic-numeric method is therefore a powerful approach to reveal the fundamental mechanisms of kinetic models, in addition to being a computational engine.

  • PDF

A Comparative Analysis of the Bacterial Growth Kinetic Parameters for Various Biological Nutrient Removal Processes (각종 질소·인 제거공정에서 도출된 미생물 성장 동역학 계수 비교 분석)

  • Lim, Se-Ho;Ko, Kwang Baik;Oh, Young-Khee
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.647-651
    • /
    • 2004
  • In this study, some of bacterial growth kinetic parameters were delineated and evaluated for the biological nutrient removal processes such as the $A^2/O$, 4stage-BNR, Intermittent Cycle Extended Aeration System(ICEAS) and Intermittently Aerated Cylindrical Oxidation Ditch(IACOD) processes. $Y_H$ values for the ICEAS process ranged from 0.71 to 0.74, and were higher than those for the other processes. It seems to indicated that organic carbons uptaked by microorganism were more used up for cell synthesis rather than for energy components in the ICEAS process. $b_H$ for the ICEAS and IACOD processes were lower than those for $A^2/O$ and 4stage-BNR processes. The $\mu_{max{\cdot}A}$ for the ICEAS was higher than those for the other processes, which indicated that desirable operating conditions for nitrifying bacteria's growth were established.

Functional Characterization of Drosophila melanogaster CYP6A8 Fatty Acid Hydroxylase

  • Sang-A Lee;Vitchan Kim;Byoungyun Choi;Hyein Lee;Young-Jin Chun;Kyoung Sang Cho;Donghak Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.82-88
    • /
    • 2023
  • Genomic analysis indicated that the genome of Drosophila melanogaster contains more than 80 cytochrome P450 genes. To date, the enzymatic activity of these P450s has not been extensively studied. Here, the biochemical properties of CYP6A8 were characterized. CYP6A8 was cloned into the pCW vector, and its recombinant enzyme was expressed in Escherichia coli and purified using Ni2+-nitrilotriacetate affinity chromatography. Its expression level was approximately 130 nmol per liter of culture. Purified CYP6A8 exhibited a low-spin state in the absolute spectra of the ferric forms. Binding titration analysis indicated that lauric acid and capric acid produced type I spectral changes, with Kd values 28 ± 4 and 144 ± 20 µM, respectively. Ultra-performance liquid chromatography-mass spectrometry analysis showed that the oxidation reaction of lauric acid produced (ω-1)-hydroxylated lauric acid as a major product and ω-hydroxy-lauric acid as a minor product. Steady-state kinetic analysis of lauric acid hydroxylation yielded a kcat value of 0.038 ± 0.002 min-1 and a Km value of 10 ± 2 µM. In addition, capric acid hydroxylation of CYP6A8 yielded kinetic parameters with a kcat value of 0.135 ± 0.007 min-1 and a Km value of 21 ± 4 µM. Because of the importance of various lipids as carbon sources, the metabolic analysis of fatty acids using CYP6A8 in this study can provide an understanding of the biochemical roles of P450 enzymes in many insects, including Drosophila melanogaster.