• Title/Summary/Keyword: Biological degradation

Search Result 831, Processing Time 0.031 seconds

Biodegradation of Phenanthrene by Psychrotrophic Bacteria from Lake Baikal

  • AHN TAE-SEOK;LEE GEON-HYOUNG;SONG HONG-GYU
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1135-1139
    • /
    • 2005
  • Psychrotrophic phenanthrene-degrading bacteria were identified in the sediment samples collected from Lake Baikal, Russia. Among 70 phenanthrene-degrading isolates, the seven that had the highest phenanthrene-degradation rates were identified by 16S rDNA sequencing. Isolate P25, identified as the Gram-positive rod-shaped organism Rhodococcus erythropolis, had the highest growth and degradation rate at $15^{\circ}C$. It could remove $26.0\%$ of 100 mg $1^{-1}$ phenanthrene in 20 days at $15^{\circ}C$, and degradation was less at $5^{\circ}C\;and\;25^{\circ}C$. The addition of surfactants to enhance degradation was tested. Brij 30 and Triton X-100 inhibited degradation at all surfactant concentrations tested, but Tween 80 stimulated phenanthrene degradation, especially at low concentrations. When $20{\times}$ CMC (critical micelle concentration) of Tween 80 was added, $38.0\%$ of 100 mg $1^{-1}$ phenanthrene was degraded in 12 days at $15^{\circ}C$. This psychrotrophic phenanthrene-degrading bacterium is a candidate for use in bioremediation of polycyclic hydrocarbon contamination in low temperature environments.

Electrochemical Degradation of Textile Effluent Using PbO2 Electrode in Tube Electrolyzer

  • Chao Wang; Yongqiang Li;Junmin Wan;Yi Hu;Yi Huang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.190-197
    • /
    • 2024
  • A commercial PbO2 mesh cylinder electrode was utilized as the anode for the electrochemical degradation of the textile effluent after the biological treatment with the titanium cylinder as the cathode in a self-made tube electrolyzer. The electrochemical performances of the PbO2 electrode in tube electrolyzer under different initial pH, electrolyte flow rates, current densities and times of the electrochemical degradation were investigated. The experimental results illustrated that the PbO2 electrode can reduce the chemical oxygen demand (COD) of the textile effluent from 94.0 mg L-1 to 65.0 mg L-1 with the current efficiency of 88.3%, the energy consumption of 27.7 kWh kg-1 (per kilogram of degraded COD) and the carbon emissions of 18.0 kg CO2 kg-1 (per kilogram of degraded COD) under the optimal operating conditions. In addition, the COD of the textile effluent could be reduced from 94.0 mg L-1 to 22.0 mg L-1 after the fifth electrochemical degradation. Therefore, PbO2 mesh cylinder electrode in the tube cylinder was promising for the electrochemical degradation of the textile effluent.

Effects of Protease Treatment and Animal Behavior on the Dissociative Culture of Aplysia Neurons

  • Lee, Nuribalhae;Rim, Young-Soo;Kaang, Bong-Kiun
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • The dissociative culture technique of Aplysia neuron is one of the key methods that have been used for studies of cellular and molecular mechanisms of neuronal functioning. However, despite the advantages this method offers as an experimental model, its technical efficiency has had room for improvement. In this study, we examined certain putative factors that might affect the culture quality. The effects of neuronal damage induced by physical injuries, heat shock, and surface protein degradation were evaluated along with the correlation between the culture quality and animal behavior. As a result, we found that physical injury can be a critical factor that affects culture quality, whereas the heat shock and surface protein degradation had negligible effect on it. In addition, we discovered that siphon retraction time was not a good measurement for healthy neurons. Based on these findings, we suggest here an improved method in which the degree of physical injury is reduced by means of multiple protease treatment.

Biodegradation of Diesel by Rhodococcus fascians in Sand Column (Rhodococcus fascians를 이용한 모래 컬럼내 디젤유 분해)

  • Moon, Jun-Hyung;Koo, Ja-Ryong;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Contamination of soils, groundwater, air and marine environment with hazardous and toxic chemicals is major side effect by the industrialization. Bioremediation, the application of microorganism or microbial processes to degrade environmental contaminant, is one of the new environmental technologies. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The purpose of this study is biodegradation of diesel in sand by using Rhodococcus fascians, a microorganism isolated from petroleum contaminated soil. This study was performed in the column containing sand obtained from sea sides. Changes in biodegradability of diesel with various flow rates, inoculum sizes, diesel concentrations, and pH were investigated in sand column. The optimal condition for biodegradation of diesel by R. fascians in sand column system was initial pH 8 and air flow rate of 30 mL/min. Higher diesel degradation was achieved at larger inoculum size and the diesel degradation by R. fascians was not inhibited by diesel concentration up to 5%.

Stability Enhancement of hGM-CSF in Transgenic Nicotiana tabacum Suspension Cell Cultures

  • Lee, Sang-Yoon;Cho, Jong-Moon;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.187-191
    • /
    • 2003
  • Proteolytic enzymes existing in plant cell cultured media are the major reason for the loss of secreted human granulocyte-macrophage colony-stimulating factor (hGM-CSF). The addition of pepstatin, aprotinin and PMSF relatively decreased the proteolytic degradation of hGM-CSF in a conditioned medium, but sufficient prevention against the proteolytic activity could not be obtained with chemical protease inhibitors. Gelatin, as a competitive substrate for protease, showed a stabilizing effect in a conditioned medium. Compared to the initial hGM-CSF concentration in a conditioned medium. with 10 g/L of gelatin, 68% of the hGM-CSF remained after 5 days. In a cell culture experiment, 5 g/L of gelatin significantly stimulated the hGM-CSF production and accumulation in culture media, with no growth inhibition. compared to the controls (4.72 $\mu\textrm{g}$/L), the extracellular hGM-CSF level could be increased to 39.78 $\mu\textrm{g}$/L with the addition of 5 g/L of gelatin.

Red Pigment of the Korean Cockcomb Flower: Color Stability of the Red Pigment (한국산 맨드래미 꽃의 적색 색소 : 적색 색소의 식품학적 안정성)

  • Lee, S.Y.;Cho, S.J.;Lee, K.A.;Byun, P.H.;Byun, S.M.
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.446-452
    • /
    • 1989
  • The pigment of the Korean cockscomb flower, a betacyanin, was evaluated for its stability in terms of temperature, pH, and its behavior upon exposure to water, light, and air. The pigment was the most stable at pH 4.0, and its activation energy (Ea) for degradation was shown to be 17.55Kcal/mol. In general, sugars protected against color degradation at the concentration of 0.1M. Degradation of this pigment in the presence of food constituents, such as organic acids , metal ions, or antioxidants, at the concentrations normally present in food preparations, can be kept to a minimum by selective adjustment of conditions. This pigment, therefore, has potential value as a food colorant under selected conditions.

  • PDF

Assessment of organic matter biodegradation and physico-chemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation

  • Fersi, Mariem;Mbarki, Khadija;Gargouri, Kamel;Mechichi, Tahar;Hachicha, Ridha
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.670-679
    • /
    • 2019
  • Lignin complexity molecule makes its biodegradation difficult during lignocellulosic wastes composting. So, the improvement of its biodegradation has usually been considered as an objective. This study aimed to determine the impact of Trametes trogii inoculation on organic matter and particularly on lignin and cellulose during green wastes co-composting with olive mill waste water sludge and coffee grounds. Three types of heaps (H1, H2 and H3) were investigated during 180 d. H3 and H2 were inoculated at the beginning of the process (t0) and 120 d later (t120), respectively while H1 was the control. Results showed the absence of pH stabilization in H3 during the first month. Also, in this period we observed a faster degradation of some easily available organic matter in H3 than in the other heaps. After 120 d, a better cellulose decomposition (25.28%) was noticed in H3 than in H1 and H2 (16%). Inoculation during the second fermentation phase induced supplementary lignin degradation in H2 with a percentage of 35% against 23 and 26% for H1 and H3, respectively. For all the runs, a Fourier Transform Infrared analysis showed aliphatic groups' decrease, OH groups' increase and lignin structural modification.