Browse > Article

Biodegradation of Phenanthrene by Psychrotrophic Bacteria from Lake Baikal  

AHN TAE-SEOK (Department of Environmental Science, Kangwon National University)
LEE GEON-HYOUNG (Department of Biology, Kunsan National University)
SONG HONG-GYU (Division of Biological Sciences, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.5, 2005 , pp. 1135-1139 More about this Journal
Abstract
Psychrotrophic phenanthrene-degrading bacteria were identified in the sediment samples collected from Lake Baikal, Russia. Among 70 phenanthrene-degrading isolates, the seven that had the highest phenanthrene-degradation rates were identified by 16S rDNA sequencing. Isolate P25, identified as the Gram-positive rod-shaped organism Rhodococcus erythropolis, had the highest growth and degradation rate at $15^{\circ}C$. It could remove $26.0\%$ of 100 mg $1^{-1}$ phenanthrene in 20 days at $15^{\circ}C$, and degradation was less at $5^{\circ}C\;and\;25^{\circ}C$. The addition of surfactants to enhance degradation was tested. Brij 30 and Triton X-100 inhibited degradation at all surfactant concentrations tested, but Tween 80 stimulated phenanthrene degradation, especially at low concentrations. When $20{\times}$ CMC (critical micelle concentration) of Tween 80 was added, $38.0\%$ of 100 mg $1^{-1}$ phenanthrene was degraded in 12 days at $15^{\circ}C$. This psychrotrophic phenanthrene-degrading bacterium is a candidate for use in bioremediation of polycyclic hydrocarbon contamination in low temperature environments.
Keywords
Biodegradation; phenanthrene; psychrotrophic bacteria; Rhodococcus erythropolis; surfactant;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Han, M., H. Choi, and H. Song. 2004. Degradation of phenanthrene by Trametes versicolor and its laccase. J. Microbiol. 42: 94-98
2 Kalf, D., T. Crommentuijn, and E. van de Plassche. 1997. Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol. Environ. Safety 36: 89-97   DOI   ScienceOn
3 Maliszewska-Kordybach, B. 1993. The effect oftemperature on the rate of disappearance of polycyclic aromatic hydrocarbons from soils. Environ. Poll. 79: 15-20   DOI   ScienceOn
4 Margesin, R. 2000. Potential of cold-adapted microorganisms for bioremediation of oil-polluted Alpine soils. Int. Biodet. Biodeg. 46: 3-10   DOI   ScienceOn
5 Margesin, R. and F. Schinner. 2001. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56: 650-663   DOI   ScienceOn
6 Samanta, S., O. Singh, and R. Jain. 2002. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 20: 243-248   DOI   ScienceOn
7 Woo, S. and J. Park. 2004. Biodegradation of aromatic compounds trom soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441
8 Yuan, S., S. Wei, and B. Chang. 2000. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41: 1463-1468   DOI   ScienceOn
9 Georlette, D., V. Blaise, T. Collins, S. D'Amico, E. Gratia, A. Hoyoux, J.-C. Marx, G. Sonan, G. Feller, and C. Gerday. 2004. Some like it cold: Biocatalysis at low temperatures. FEMS Microbiol. Rev. 28: 25-42   DOI   ScienceOn
10 Kotterman, M., E. Vis, and J. Field. 1998, Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl. Environ. Microbiol. 64: 2853-2858
11 Mohn, W. and G Stewart. 2000. Limiting factors for hydrocarbon biodegradation at low temperature in Arctic soils. Soil Biol. Biochem. 32: 1161-1172   DOI   ScienceOn
12 Cavicchioli, R., K. Siddiqui, D. Andrews, and K. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 12: 253-261
13 Stanier, R., N. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads; a taxonomic study. J. Gen. Microbiol. 43: 159-171   DOI   ScienceOn
14 Volkering, F., A. Breure, J. Andel, and W. Rulkens. 1995. Influence of non ionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 61: 1699-1705
15 Aislabie, J., J. Foght, and D. Saul. 2000. Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol. 23: 183-188   DOI   ScienceOn
16 Aislabie, J., M. McLeod, and R. Fraser. 1998. Potential for biodegradation of hydrocarbons in soil from the ross dependency, Antarctica. Appl. Microbiol. Biotechnol. 49: 210-214   DOI   ScienceOn
17 Baek, K., H. Kim, S. Moon, I. Lee, H. Oh, and B. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905
18 Lee, K., J. Park, and I. Ahn. 2003. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. J. Hazard. Mater. B105: 157-167
19 Alexander, M. 1999. Biodegradation and Bioremediation, pp. 299-323. Academic Press, New York, U.S.A
20 Margesin, R., P.-A. Fonteyne, and B. Redl. 2005. Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Res. Microbiol. 156: 68-75   DOI   ScienceOn
21 Eriksson, M., J. Ka, and W. Mohn. 2001. Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl. Environ. Microbiol. 67: 5107-5112   DOI   ScienceOn
22 Eriksson, M., E. Sodersten, Z. Yu, G. Dalhammar, and W. Mohn. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing condition in enrichment cultures from northern soils. Appl. Environ. Microbiol. 69: 275-284   DOI   ScienceOn
23 Sepie, E., M. Bricelj, and H. Leskovsek. 2003, Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms. Chemosphere 52: 1125-1133   DOI   ScienceOn
24 Kim, I., J. Park, and K. Kim. 2001. Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl. Geochem. 16: 1419-1428   DOI   ScienceOn
25 Moran, B. and W. Hickey. 1997. Trichloroethylene biodegradation by mesophilic and psychrophilic ammonia oxidizers and methanotrophs in groundwater microcosms. Appl. Environ. Microbiol. 63: 3866-3871
26 Chen, P., M. Pickard, and M. Gray. 2000. Surfactant inhibition of bacterial growth on solid anthracene. Biodegradation 11: 341-347   DOI   ScienceOn
27 Oh, Y., D. Sim, and S. Kim. 2003. Effectiveness of bioremediation on oil-contaminated sand in intertidal zone. J. Microbiol. Biotechnol. 13: 437-443
28 Kanaly, R. and S. Harayama. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182: 2059-2067   DOI   ScienceOn
29 Lowry, O., N. Rosebrough, A. Farr, and R. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
30 Han, K., Y. Jung, and S. Son. 2003. Phylogenetic analysis of phenanthrene-degrading Sphingomonas. J. Microbiol. Biotechnol. 13: 942-948
31 Whyte, L., J. Hawari, E. Zhou, L. Bourbonniere, W. Inniss, and C. Greer. 1998. Biodegradation of variable-chain length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 64: 2578-2584
32 de Carvalho, C. and M. da Fonseca. 2005. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol. Ecol. 51: 389-399   DOI   ScienceOn
33 Ahmed, M. T., A. Dewedar, L. Mekki, and A. Diab. 1999. The efficacy of an oxidation pond in mineralizing some industrial waste products with special reference to fluorene degradation: A case study. Waste Management 19: 535-540   DOI   ScienceOn
34 Deschenes, L., P. Lafrance, J.-P. Villeneuve, and R. Samson. 1996. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl. Microbiol. Biotechnol. 46: 638-646   DOI   PUBMED
35 Yakimov, M., G. Gentile, V. Bruni, S. Cappello, G. D'Auria, P. Golyshin, and L. Giuliano. 2004. Crude oil-induced structural shift of coastal bacterial communities of rod bay (Terra Nova Bay, Ross Sea, Antarctica) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiol. Ecol. 49: 419-432   DOI   ScienceOn