• 제목/요약/키워드: Biological degradation

검색결과 831건 처리시간 0.032초

미생물에 의한 난분해성 유기염소계 오염물질의 분해 -각종 PCBs 및 유기염소계 농약의 분해와 분해산물- (Degradation of Organochlorinated Pollutants by Microorganism -Degradation of PCBs and Organochlorine Pesticides, and Degradasion Products-)

  • 김찬조;오만진;이종수
    • Applied Biological Chemistry
    • /
    • 제30권1호
    • /
    • pp.40-45
    • /
    • 1987
  • Alcaligenes aquamarinus에 의한 각종 PCBs와 유기염소계 농약 및 토양중의 PBC-42 분해 등을 검토하고 TLC 등으로 분해산물을 검정한 결과 PCBs에서는 염소화도가 낮은 PCBs가 더 쉽게 분해되었고 유기염소계 농약에서는 p,p'-DDT>r-BHC>Thiolix 순으로 분해되었다. 토양중의 PCB-42의 분해는 살균하지 않은 토양시료에서 $25^{\circ}C$, 25일 배양으로 약 40%가 분해되었다. PCB-42의 분해로 생성된 황색물질의 최대 흡수파장은 pH 4.5에서 258nm와 295nm이었고 분해산물의 일종인 p-chlorobenzoic acid가 TLC와 GC에 의하여 확인되었다.

  • PDF

리튬이온이 첨가된 프루시안 블루의 전기변색 특성 연구 (Electrochromic Properties of Li+-Modified Prussian Blue)

  • 유성종;임주완;박선하;원호연;성영은
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.126-131
    • /
    • 2007
  • [ $Li_+$ ]를 기반으로 하는 비수용액 전해질에서 Prussian blue가 degradation이 없이 구동할 수 있도록 소재를 design하고 제조하여 전기화학적 변색특성을 연구하였다. Prussian blue는 ITO가 코팅되어 있는 유리판위에 일정전류-전착법으로 코팅을 했고, 이 때 사용된 코팅 용액은 $FeCl_3,\;K_3Fe(CN)_6$을 deionized water에 녹이고, HCl, KCl, LiCl을 각각 넣었다. 전기화학적 변색특성을 비교하기 위해 continuous와 pulse potential cycle 하는 동안 transmittance 변화를 in-situ He-Ne laser를 이용하여 측정하였고, electroactive layer thickness를 통해 degradation된 정도를 실험하였다.

Inhibition of Polyphosphate Degradation in Synechocystis sp. PCC6803 through Inactivation of the phoU Gene

  • Han-bin Ryu;Mi-Jin Kang;Kyung-Min Choi;Il-Kyu Yang;Seong-Joo Hong;Choul-Gyun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.407-414
    • /
    • 2024
  • Phosphorus is an essential but non-renewable nutrient resource critical for agriculture. Luxury phosphorus uptake allows microalgae to synthesize polyphosphate and accumulate phosphorus, but, depending on the strain of algae, polyphosphate may be degraded within 4 hours of accumulation. We studied the recovery of phosphorus from wastewater through luxury uptake by an engineered strain of Synechocystis sp. with inhibited polyphosphate degradation and the effect of this engineered Synechocystis biomass on lettuce growth. First, a strain (∆phoU) lacking the phoU gene, which encodes a negative regulator of environmental phosphate concentrations, was generated to inhibit polyphosphate degradation in cells. Polyphosphate concentrations in the phoU knock-out strain were maintained for 24 h and then decreased slowly. In contrast, polyphosphate concentrations in the wild-type strain increased up to 4 h and then decreased rapidly. In addition, polyphosphate concentration in the phoU knockout strain cultured in semi-permeable membrane bioreactors with artificial wastewater medium was 2.5 times higher than that in the wild type and decreased to only 16% after 48 h. The biomass of lettuce treated with the phoU knockout strain (0.157 mg P/m2) was 38% higher than that of the lettuce treated with the control group. These results indicate that treating lettuce with this microalgal biomass can be beneficial to crop growth. These results suggest that the use of polyphosphate-accumulating microalgae as biofertilizers may alleviate the effects of a diminishing phosphorous supply. These findings can be used as a basis for additional genetic engineering to increase intracellular polyphosphate levels.

Nucleotide Triphosphates Inhibit the Degradation of Unfolded Proteins by HslV Peptidase

  • Lee, Jung Wook;Park, Eunyong;Bang, Oksun;Eom, Soo-Hyun;Cheong, Gang-Won;Chung, Chin Ha;Seol, Jae Hong
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.252-257
    • /
    • 2007
  • Escherichia coli HslVU is an ATP-dependent protease consisting of two heat shock proteins, the HslU ATPase and HslV peptidase. In the reconstituted enzyme, HslU stimulates the proteolytic activity of HslV by one to two orders of magnitude, while HslV increases the rate of ATP hydrolysis by HslU several-fold. Here we show that HslV alone can efficiently degrade certain unfolded proteins, such as unfolded lactalbumin and lysozyme prepared by complete reduction of disulfide bonds, but not their native forms. Furthermore, HslV alone cleaved a lactalbumin fragment sandwiched by two thioredoxin molecules, indicating that it can hydrolyze the internal peptide bonds of lactalbumin. Surprisingly, ATP inhibited the degradation of unfolded proteins by HslV. This inhibitory effect of ATP was markedly diminished by substitution of the Arg86 residue located in the apical pore of HslV with Gly, suggesting that interaction of ATP with the Arg residue blocks access of unfolded proteins to the proteolytic chamber of HslV. These results suggest that uncomplexed HslV is inactive under normal conditions, but may can degrade unfolded proteins when the ATP level is low, as it is during carbon starvation.

A comparative study on the degradation of methyl orange, methylene blue and congo red by atmospheric pressure jet

  • Park, Ji Hoon;Yusupov, Maksudbek;Lingamdinne, Lakshmi Prasanna;Koduru, Janardhan Reddy;Bogaerts, Annemie;Choi, Eun Ha;Attri, Pankaj
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.190.1-190.1
    • /
    • 2016
  • One of the most serious problems faced by billions of people today is the availability of fresh water. According to statistics, 15% of the world's total output of dye products is discharged into the environment as dye wastewater, which seriously pollutes groundwater resources. For the treatment of chemically and biologically contaminated water the advanced oxidation processes (AOPs) shows the promising action. The main advantage with AOPs is the ability to degrade the organic pollutants to $CO_2$ and $H_2O$. For this degradation process the AOPs generation of powerful and non-selective radicals that may oxidize majority of the organic pollutants present in the water body. To generate the various reactive chemical species such as radicals (${\bullet}OH$, ${\bullet}H$, ${\bullet}O$, ${\bullet}HO_2$) and molecular species ($H_2O_2$, $H_2$, $O_2$) in large amount in water, we have used the atmospheric pressure plasma. Among the reactive and non-reactive species, the hydroxyl radical (${\bullet}OH$) plays important role due to its higher oxidation potential (E0: 2.8 V). Therefore, in this work we have checked the degradation of various dyes such as methyl orange, methylene blue and congo red using different type of atmospheric pressure plasma sources (Indirect jet and direct jet). To check the degradation we have used the UV-visible spectroscopy, HPLC and LC-MS spectroscopy. Further, to estimate role of ${\bullet}OH$ on the degradation of dyes we have studied the molecular dynamic simulation.

  • PDF

Proteomic Analysis of Diesel Oil Biodegradation by Bacillus sp. with High Phosphorus Removal Capacity Isolated from Industrial Wastewater

  • Hee-Jung Kim;Deok-Won Kim;Jin-Hyeok Moon;Ji-Su Park;Eun-Ji Oh;Jin Yoo;Deok-Hyun Kim;Sun-Hwa Park;Keun-Yook Chung
    • 공업화학
    • /
    • 제34권6호
    • /
    • pp.649-659
    • /
    • 2023
  • This study was initiated to evaluate the phosphorus (P) removal and diesel oil degradation by bacteria isolated from industrial wastewater. The bacteria isolated were identified as Bacillus sp. The P removal efficiencies by Bacillus sp. were 99% at the initial 20 mg/L P concentration. The diesel degradation efficiencies by Bacillus sp. were 86.4% at an initial 1% diesel concentration. Lipophilicity by bacteria was the highest in the log phase, whereas it was the lowest in the death phase. As the diesel was used as a carbon source, P removal efficiencies by Bacillus sp. were 68%. When glucose, acetate, and a mixture of glucose and acetate as second carbon sources were added, the diesel degradation efficiencies were 69.22%, 65.46%, and 51.46%, respectively. The diesel degradation efficiency was higher in the individual additions of glucose or acetate than in the mixture of glucose and acetate. When P concentration increased from 20 mg/L to 30 mg/L, the diesel degradation efficiency was increased by 7% from 65% to 72%, whereas when P concentration was increased from 30 mg/L to 40 mg/L, there was no increase in diesel degradation. One of the five proteins identified by proteome analysis in the 0.5% diesel-treated samples may be involved in alkane degradation and is known as the cytochrome P450 system. Also, two of the sixteen proteins identified in the 1.5% diesel-treated samples may be implicated in the fatty acid transport system and alcohol dehydrogenation.

Serial Degradation of Perchloroethylene by Delftia sp. N6 after Dechlorination Using Fenton's Reagent

  • Lee, Wan-Seok;Kim, Jang-Eok;Kim, Hee-Sik;Ahn, Chi-Yong;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1734-1739
    • /
    • 2006
  • The degradation of perchloroethylene (PCE) was investigated with the serial treatment of biological reaction after dechlorination using Fenton's reagent. The dechlorination of PCE was expressed using $D_m$ (dechlorination value), calculated from ${\Delta}Cl^-mol/{\Delta}PCE$ mol, and was 2.58 with 5 mM of $H_2O_2$ and $Fe^{3+}$. The $150{\mu}M$ of PCE was transformed to $37{\mu}M$ of dichloroacetic acid (DCAA). Biological treatment with Delftia sp. N6 was applied after degradation of PCE by the Fenton reaction. The optical densities indicating cell growth were 0.53/0.10 with/without the Fenton reaction after one day, respectively. The N6 strain degraded 95% of the DCAA produced from PCE by the Fenton reaction within one day. Consequently, it seemed that the serial treatment of a Fenton reaction and biological reaction was effective in the removal of not only PCE, but also DCAA, one of the major metabolites of PCE.

Phosphorylation-dependent regulation of Notch1 signaling: the fulcrum of Notch1 signaling

  • Lee, Hye-Jin;Kim, Mi-Yeon;Park, Hee-Sae
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.431-437
    • /
    • 2015
  • Notch signaling plays a pivotal role in cell fate determination, cellular development, cellular self-renewal, tumor progression, and has been linked to developmental disorders and carcinogenesis. Notch1 is activated through interactions with the ligands of neighboring cells, and acts as a transcriptional activator in the nucleus. The Notch1 intracellular domain (Notch1-IC) regulates the expression of target genes related to tumor development and progression. The Notch1 protein undergoes modification after translation by posttranslational modification enzymes. Phosphorylation modification is critical for enzymatic activation, complex formation, degradation, and subcellular localization. According to the nuclear cycle, Notch1-IC is degraded by E3 ligase, FBW7 in the nucleus via phosphorylation-dependent degradation. Here, we summarize the Notch signaling pathway, and resolve to understand the role of phosphorylation in the regulation of Notch signaling as well as to understand its relation to cancer. [BMB Reports 2015; 48(8): 431-437]