• Title/Summary/Keyword: Biological database

Search Result 498, Processing Time 0.027 seconds

Use of Graph Database for the Integration of Heterogeneous Biological Data

  • Yoon, Byoung-Ha;Kim, Seon-Kyu;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data.

Database of National Species List of Korea: the taxonomical systematics platform for managing scientific names of Korean native species

  • Park, Jongsun;An, Jung-Hyun;Kim, Yongsung;Kim, Donghyun;Yang, Byeong-Gug;Kim, Taeho
    • Journal of Species Research
    • /
    • v.9 no.3
    • /
    • pp.233-246
    • /
    • 2020
  • A scientific name is one of changeable terms in biology whenever additional research results of specific taxa is accumulated. The Database of the National Species List of Korea (DBNKo) was developed to manage taxonomic information of Korean species, designed to describe the changeable and complex taxonomical structure and information. A Korean Taxonomical Serial Number (KTSN) was assigned to each taxon, different from the normally used systems that the scientific name was considered as primary key to manage higher rank of taxa systematically. Common names were also treated with the KTSN, reflecting that common name is considered as one type of taxon. Additional taxonomic information (e.g., synonyms, original names, and references) was also added to the database. A web interface with an intuitive dashboard presenting taxonomic hierarchical structure is provided to experts and/or managers of the DBNKo. Currently, several biological databases are available in the National Institute of Biological Resources (NIBR) such as a specimen database, a digital library, a genetic information system, and the shared species data based on the DBNKo. The DBNKo started sharing species information with other institutions such as the Nakdonggang National Institute of Biological Resources. It is an ideal centralized species database to manage standardized information of Korean species.

Higher Order Knowledge Processing: Pathway Database and Ontologies

  • Fukuda, Ken Ichiro
    • Genomics & Informatics
    • /
    • v.3 no.2
    • /
    • pp.47-51
    • /
    • 2005
  • Molecular mechanisms of biological processes are typically represented as 'pathways' that have a graph­analogical network structure. However, due to the diversity of topics that pathways cover, their constituent biological entities are highly diverse and the semantics is embedded implicitly. The kinds of interactions that connect biological entities are likewise diverse. Consequently, how to model or process pathway data is not a trivial issue. In this review article, we give an overview of the challenges in pathway database development by taking the INOH project as an example.

A Study of Query Processing Model to applied Meta Rule in 4-Level Layer based on Hybrid Databases (하이브리드 데이터베이스 기반의 4단계 레이어 계층구조에서 메타규칙을 적용한 질의어 수행 모델에 관한 연구)

  • Oh, Ryum-Duck
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.125-134
    • /
    • 2009
  • A biological data acquisition based on web has emerged as a powerful tool for allowing scientists to interactively view entries form different databases, and to navigate from one database to another molecular-biology database links. In this paper, the biological conceptual model is constructed hybrid biological data model to represent interesting entities in the data sources to applying navigation rule property for each biological data source based on four biological data integrating layers to control biological data. When some user's requests for application service are occurred, we can get the data from database and data source via web service. In this paper, we propose a query processing model and execution structure based on integrating data layers that can search information on biological data sources.

Traditional Knowledge analysis based on Native Biological Resources Database Construction of the National Park Area (국립공원 지역의 한국 자생생물자원 전통지식 DB구축을 통한 전통지식 현황 분석)

  • Bae, Se-Eun;Kim, Boyoung;Kim, Sung-Ha;Park, Jeong Hwan;Bae, EunKyung;Jang, Jin-Hwa;Lee, Sang-Hun;Park, Jae Won;Shin, Jinseop
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.9
    • /
    • pp.267-275
    • /
    • 2016
  • Species are constantly using for clothing, food, shelter and health are distributed in various places. Convention on Biological Diversity made for conserve resources and enhance the value in many countries around the world. Each country is in the process of building a database for to protect the native biological resources and establish sovereignty. This studies analyzed the distribution of such traditional knowledge of native biological resources and builded a database through using standardized form of collected data made by our research. The result, almost native biological resources used for food and medical treatment.

WebChemDB: An Integrated Chemical Database Retrieval System

  • Hou, Bo-Kyeng;Moon, Eun-Joung;Moon, Sung-Chul;Kim, Hae-Jin
    • Genomics & Informatics
    • /
    • v.7 no.4
    • /
    • pp.212-216
    • /
    • 2009
  • WebChemDB is an integrated chemical database retrieval system that provides access to over 8 million publicly available chemical structures, including related information on their biological activities and direct links to other public chemical resources, such as PubChem, ChEBI, and DrugBank. The data are publicly available over the web, using two-dimensional (2D) and three-dimensional (3D) structure retrieval systems with various filters and molecular descriptors. The web services API also provides researchers with functionalities to programmatically manipulate, search, and analyze the data.

Contracture for GRM of Biological Resources Information of based DADI (DADI 기반의 생물다양성정보에 대한 GRM 구축)

  • 이계준;박형선;안부영;양진호
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2002.11a
    • /
    • pp.479-484
    • /
    • 2002
  • In this paper consisted of thur steps for the research The first, The Database of Biological Resource Information are constructing for species Information and Content Information of based XML. The second The item of defined from the analysts and must be considered for national GSD(Global Species Database), Supply and Contracture of input System of based Component for the Efficient Local Information Database. The third, Information Service and Interoperability are using the GRM(Global Road Map) of based DADI. These are able to accomplish to Contracture for Database and Service structure of Biological Resources Information

  • PDF

Contracture for GRM of Biological Resources Information of based DADI (DADI 기반의 생물다양성정보에 대한 GRM 구축)

  • 이계준;박형선;안부영;양진호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.11a
    • /
    • pp.479-484
    • /
    • 2002
  • In this paper consisted of three steps for the research The first, The Database of Biological Resource Information are constructing for species Information and Content Information of based XML. The second, The item of defined from the analysts and must be considered for national GSD(Global Species Database), Supply and Contracture of Input System of based Component for the Efficient Local Information Database. The third Information Service and Interoperability are using the GRM(Global Road Map) of based DADI. These are able to accomplish to Contracture for Database and Service structure of Biological Resources Information.

  • PDF

GEDA: New Knowledge Base of Gene Expression in Drug Addiction

  • Suh, Young-Ju;Yang, Moon-Hee;Yoon, Suk-Joon;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.441-447
    • /
    • 2006
  • Abuse of drugs can elicit compulsive drug seeking behaviors upon repeated administration, and ultimately leads to the phenomenon of addiction. We developed a procedure for the standardization of microarray gene expression data of rat brain in drug addiction and stored them in a single integrated database system, focusing on more effective data processing and interpretation. Another characteristic of the present database is that it has a systematic flexibility for statistical analysis and linking with other databases. Basically, we adopt an intelligent SQL querying system, as the foundation of our DB, in order to set up an interactive module which can automatically read the raw gene expression data in the standardized format. We maximize the usability of this DB, helping users study significant gene expression and identify biological function of the genes through integrated up-to-date gene information such as GO annotation and metabolic pathway. For collecting the latest information of selected gene from the database, we also set up the local BLAST search engine and non-redundant sequence database updated by NCBI server on a daily basis. We find that the present database is a useful query interface and data-mining tool, specifically for finding out the genes related to drug addiction. We apply this system to the identification and characterization of methamphetamine-induced genes' behavior in rat brain.

SOP (Search of Omics Pathway): A Web-based Tool for Visualization of KEGG Pathway Diagrams of Omics Data

  • Kim, Jun-Sub;Yeom, Hye-Jung;Kim, Seung-Jun;Kim, Ji-Hoon;Park, Hye-Won;Oh, Moon-Ju;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.208-213
    • /
    • 2007
  • With the help of a development and popularization of microarray technology that enable to us to simultaneously investigate the expression pattern of thousands of genes, the toxicogenomics experimenters can interpret the genome-scale interaction between genes exposed in toxicant or toxicant-related environment. The ultimate and primary goal of toxicogenomics identifies functional context among the group of genes that are differentially or similarly coexpressed under the specific toxic substance. On the other side, public reference databases with transcriptom, proteom, and biological pathway information are needed for the analysis of these complex omics data. However, due to the heterogeneous and independent nature of these databases, it is hard to individually analyze a large omics annotations and their pathway information. Fortunately, several web sites of the public database provide information linked to other. Nevertheless it involves not only approriate information but also unnecessary information to users. Therefore, the systematically integrated database that is suitable to a demand of experimenters is needed. For these reasons, we propose SOP (Search of Omics Pathway) database system which is constructed as the integrated biological database converting heterogeneous feature of public databases into combined feature. In addition, SOP offers user-friendly web interfaces which enable users to submit gene queries for biological interpretation of gene lists derived from omics experiments. Outputs of SOP web interface are supported as the omics annotation table and the visualized pathway maps of KEGG PATHWAY database. We believe that SOP will appear as a helpful tool to perform biological interpretation of genes or proteins traced to omics experiments, lead to new discoveries from their pathway analysis, and design new hypothesis for a next toxicogenomics experiments.