• Title/Summary/Keyword: Biological and physical properties

Search Result 391, Processing Time 0.032 seconds

Antimicrobial Activity of Caffeic acid-functionalized ZnO Nanoparticles

  • Choi, Kyong-Hoon;Hong, Dae Eui;Kim, Ho-Joong;Park, Bong Joo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.380.2-380.2
    • /
    • 2016
  • The emergence of new infectious diseases, the resurgence of several infections that appeared to have been controlled and the increase in bacterial resistance have created the necessity for studies directed towards the development of new antimicrobials. In the present study, we have synthesized a novel antioxidant ZnO nanoparticle that is newly designed and prepared by simple surface modification process. Antioxidative functionality is provided by the immobilization of antioxidant 3-(3,4-dihydroxyphenyl)-2-propenoic acid (caffeic acid, CA) onto the surface of ZnO nanoparticles. Microstructure and physical properties of the ZnO@CA nanoparticles were investigated by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR) and steady state spectroscopic methods. Antimicrobial Activities of ZnO@CA nanoparticles were measured against various bacterial strains using antibacterial testing methods.

  • PDF

Studies on Manufacture of Hanji(Korean Paper) Sludge·Wood Particle Composite - I. Physical Properties of Hanji(Korean Paper)Sludge·Wood Particle Composite (한지(韓紙) 슬러지·목재(木材) 파티클 복합(複合)보드의 제조연구(製造硏究) - I. 한지(韓紙) 슬러지·목재(木材) 파티클 복합(複合)보드의 물리적(物理的) 성질(性質))

  • Lee, Phil-Woo;Lee, Hak-Lae;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.109-117
    • /
    • 2001
  • This research was carried out to develop the Hanji(Korean paper) sludge wood particle composite utilizing the waste sludges occurring from the making process of Hanji(Korean paper). In the research, four mixing ratios of white or black sludge to wood particle(10:90, 20:80, 30:70, and 40:60), three types of the resin adhesives(PMDI, urea and phenol resin) and three levels of the densities(0.60, 0.75 and 0.90) were designed to investigate the physical properties of Hanji(Korean paper) sludge wood particle composite. The linear expansion of Hanji(Korean paper) sludge wood particle composite was not always increased, compared to control boards. For thickness swelling, PMDI-bonded composites had the lowest value, and thickness swelling of composite was generally decreased with the increase of Hanji sludge. The water absorption of white sludge wood particle composite had no tendency, hut that of black sludge wood particle composite was decreased with an increase of mixing ratio of Hanji sludge.

  • PDF

Effects of proanthocyanidin, a crosslinking agent, on physical and biological properties of collagen hydrogel scaffold

  • Choi, Yoorina;Kim, Hee-Jin;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.296-303
    • /
    • 2016
  • Objectives: The purpose of the present study was to evaluate the effects of proanthocyanidin (PAC), a crosslinking agent, on the physical properties of a collagen hydrogel and the behavior of human periodontal ligament cells (hPDLCs) cultured in the scaffold. Materials and Methods: Viability of hPDLCs treated with PAC was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The physical properties of PAC treated collagen hydrogel scaffold were evaluated by the measurement of setting time, surface roughness, and differential scanning calorimetry (DSC). The behavior of the hPDLCs in the collagen scaffold was evaluated by cell morphology observation and cell numbers counting. Results: The setting time of the collagen scaffold was shortened in the presence of PAC (p < 0.05). The surface roughness of the PAC-treated collagen was higher compared to the untreated control group (p < 0.05). The thermogram of the crosslinked collagen exhibited a higher endothermic peak compared to the uncrosslinked one. Cells in the PAC-treated collagen were observed to attach in closer proximity to one another with more cytoplasmic extensions compared to cells in the untreated control group. The number of cells cultured in the PAC-treated collagen scaffolds was significantly increased compared to the untreated control (p < 0.05). Conclusions: Our results showed that PAC enhanced the physical properties of the collagen scaffold. Furthermore, the proliferation of hPDLCs cultured in the collagen scaffold crosslinked with PAC was facilitated. Conclusively, the application of PAC to the collagen scaffold may be beneficial for engineering-based periodontal ligament regeneration in delayed replantation.

SPECTROSCOPIC ADMITTIVITY IMAGING OF BIOLOGICAL TISSUES: CHALLENGES AND FUTURE DIRECTIONS

  • Zhang, Tingting;Bera, Tushar Kanti;Woo, Eung Je;Seo, Jin Keun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.77-105
    • /
    • 2014
  • Medical imaging techniques have evolved to expand our ability to visualize new contrast information of electrical, optical, and mechanical properties of tissues in the human body using noninvasive measurement methods. In particular, electrical tissue property imaging techniques have received considerable attention for the last few decades since electrical properties of biological tissues and organs change with their physiological functions and pathological states. We can express the electrical tissue properties as the frequency-dependent admittivity, which can be measured in a macroscopic scale by assessing the relation between the time-harmonic electric field and current density. The main issue is to reconstruct spectroscopic admittivity images from 10 Hz to 1 MHz, for example, with reasonably high spatial and temporal resolutions. It requires a solution of a nonlinear inverse problem involving Maxwell's equations. To solve the inverse problem with practical significance, we need deep knowledge on its mathematical formulation of underlying physical phenomena, implementation of image reconstruction algorithms, and practical limitations associated with the measurement sensitivity, specificity, noise, and data acquisition time. This paper discusses a number of issues in electrical tissue property imaging modalities and their future directions.

Targeted Nanomedicine that Interacts with Host Biology

  • Ju, Jin-Myeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.81-81
    • /
    • 2017
  • Nanotechnology is of great importance to molecular biology and medicine because life processes are maintained by the action of a series of molecular nanomachines in the cell machinery. Recent advances in nanoscale materials that possess emergent physical properties and molecular organization hold great promise to impact human health in the diagnostic and therapeutic arenas. In order to be effective, nanomaterials need to navigate the host biology and traffic to relevant biological structures, such as diseased or pathogenic cells. Moreover, nanoparticles intended for human administration must be designed to interact with, and ideally leverage, a living host environment. Inspired by nature, we use peptides to transfer biological trafficking properties to synthetic nanoparticles to achieve targeted delivery of payloads. In this talk, development of nanoscale materials will be presented with a particular focus on applications to three outstanding health problems: bacterial infection, cancer detection, and traumatic brain injury. A biodegradable nanoparticle carrying a peptide toxin trafficked to the bacterial surface has antimicrobial activity in a pneumonia model. Trafficking of a tumor-homing nanoprobes sensitively detects cancer via a high-contrast time-gated imaging system. A neuron-targeted nanoparticle carrying siRNA traffics to neuronal populations and silences genes in a model of traumatic brain injury. Unique combinations of material properties that can be achieved with nanomaterials provide new opportunities in translational nanomedicine. This framework for constructing nanomaterials that leverage bio-inspired molecules to traffic diagnostic and therapeutic payloads can contribute on better understanding of living systems to solve problems in human health.

  • PDF

THE SYNTHESIS, PHYSICAL PROPERTY, AND THE BIOLOGICAL ACTIVITY OF NOVEL NEO-CERAMIDES

  • Kim, Duck-Hee;Lee, Bo-Seaub;Koo, Myeong-Soo;Kim, Hyun-Jun;Lee, Hae-Kwang;Park, Moon-Jae;Lee, Ok-Sub
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.6-16
    • /
    • 1998
  • Ceramides are currently emerging as the major skin care ingredients due to !heir barrier properties in the stratum corneum of the human skin. Thus, major cosmetic companies have developed synthetic ceramide analogs for their own use. In this study, several ceramide mimic compounds , new skin barrier lipids, were designed and synthesized, and their physical and biological properties were investigated to evaluate their skin care capability. Several structures were designed from the variation of hydrophobic alkyl chain and hydrophilic moiety by the use of molecular modeling software. The selected targets were synthesized, and their properties and activities were studied as the pure form, in the emulsion, or in the lamellar mixture containing cholesterol and fatty acid. Some compounds, such as 1,3-bis(N-(2-hydroxyethyl)-palmitoylamino)-2-hydroxypropane, enhanced the restoration of skin barrier damaged by SDS(sodium dodecyl sulfate), and by acetone treatment. The rate of restoration was comparable to that of natural ceramides. The synthesized compounds alleviated SDS induced skin irritation and facilitated lamellar phase liquid crystal formation. The treatment of 1,3-Dis(N-(2-hydroxyethyl)-palmitoylam ino)-2-hyd roxypropane on the acetone damaged skin revealed that the compound promoted the recovery of intercellular lipid lamellar structure of stratum corneum layer. The replacement of palmitoyl groups of the compound with shorter alkyl chain gave lower emulsion viscosity and liquid crystal density, suggesting easier formulation and poorer barrier activity. Most of the synthesized compounds were non-irritable in various toxicological tests proving that they can be safely introduced to the skin care formulations.

  • PDF

Evaluation of Nondestructive Diagnosis and Material Characteristics of Stone Lantern at Damyang Gaeseonsaji Temple Site in Korea

  • Lee, Chan Hee;Araki, Naruto
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.279-293
    • /
    • 2019
  • The stone lantern of the Damyang Gaeseonsaji temple site is a cultural heritage built during the Unified Silla period (AD 868). The reason for its value as a cultural property is due to wittern the background and the period created on inscription of the lamp stone engraved by letters. The stone lantern consists of two types of lithic tuffs for the 23 original properties, the replaced stones in 1991, and the biotite granite for its ground stones replaced in 2005. The lithic tuffs selected as the replacement parts in 1991 and 2017 have been examined and got to properties of hardly exposure moisture as well as very similar geochemical characteristics. There were various types of physical deterioration of the stone properties and structural cracks; in particular, on the northern side of the stylobates. Chemical and biological deterioration can be identified as black, white, and brown discolorations as well as by the presence of lichens, bryophytes, and herbaceous plants. In the evaluation of the physical properties of the stone lantern, the mean and maximum ultrasonic velocities were found to be similar in each direction. However, the lowest velocity on the east and south sides were found to be lower than those of other stone properties. It was found that physical damage to the stylobates resulted from water expansion in a freeze-to-thaw phenomena related to water content. Therefore, dismantling repair was carried out in the protection facility to restrict further water supply to the stone as much as possible.

Study on Rheological and Sensory Properties of Cooked Rices -II. Effect of Storage on Textural Properties of Cooked Rices- (쌀품종에 따른 쌀밥의 물리적 및 관능적 특성 연구 -II. 쌀밥의 저장이 텍스쳐에 미치는 영향-)

  • Hwang, Jeen-Sun;Kim, Chong-Kun;Byun, Myung-Woo;Chang, Hak-Gil;Kim, Woo-Jung
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.118-125
    • /
    • 1987
  • Three rice varieties of Akibare (japonica), Milyang 30 (indica) and Taebaeg (indica) were investigated for their changes in sensory and physical qualities of cooked rices during storage at the temperature range of $4^{\circ}C$ and $70^{\circ}C$ for 25 hours, The qualities studied were sensory attributes of texture which were evaluated by multiple comparison method and physical characteristics of texture measured using with rheometer. Physical Properties of hardness, adhesiveness and elasticity of cooked rices were found to be different among the rice varieties and were affected by storage conditions. Higher values in hardness and elasticity and lower values in adhesiveness were measured for cooked rices of Akibare immidiately after cooking. Those physical values were changed by a steady decrease in hardness and elasticity and increase in adhesiveness during storage for 25 hours. Correlations between sensory and physical characteristics of texture was found a significant relationships between gumminess and hardness (r=0.696), gumminess and adhesiveness (r=-0.800) and gumminess and elasticity (r=0.806).

  • PDF

An Evaluational Investigation of the Physical Properties for the Commercially Available Cervical Braces (수종 시판 경추보조기의 물성에 관한 평가조사)

  • Park, Jong-Chul;Kim, Kyung-Tae;Suh, Hwal
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.205-210
    • /
    • 1997
  • This is to investigate the physical properties of the commercially available Soft, Thomas, Minerva, and Philadelphia cervical braces which are widely used in orthopedics, neurosurgery, and rehabilitation medicine clinics as assisting devices for physical stabilization of cervical vertebrates, to use as a basic data for designing new type brace. Tensile strengths were observed by universal mechanical measuring device and Thomas brace required the highest stress to break by tensile stress. Durabilities against continuous frictional forces were also determined, and Minerva brace demonstrated the longest frictional time until being perforated. According to these results, poly ethlene is recommendable as a frame and preparation of pores in the material is favorable to provide ventilation to skin.

  • PDF

Studies on antimicrobial agent produced by lactobacillus acidophilus (Lactobacillus acidophilus가 생산한 항균물질(抗菌物質)에 관한 연구(硏究))

  • Kim, Dong-shin
    • Korean Journal of Veterinary Research
    • /
    • v.24 no.2
    • /
    • pp.149-162
    • /
    • 1984
  • The research was conducted(1) to confirm the agent(s) responsible for the antimicrobial activity contained in the fermented tomato juice with L. acidophilus(2) to extract and purify the antimicrobial agent(s)(3) to find the biological, physical and chemical properties of the agent(s). The following results were obtained and summarized as followings; 1. The agent responsible for the inhibitory activity was confirmed by both well assay method using fermented tomato juice with L. acidophilus and turbidimetric technique using the cell-free filtrate or neutralized filtrate of tomato acidohilus culture and found exerted antimicrobial agent other than lactic acid. 2. The procedures of purification : The isolation and purification of antimicrobial agent from the lyophilized acidophilus tomato culture were carried out by (1) methanol extraction (2) acetone extraction, (3) Sephadex G-50 gel filtration (4) paper chromatography and (5) thin layer chromatography. 3. The biological, physical and chemical properties of antimicrobial agent: The biological, physical, chemical properties of the purified antimicrobial agent were: (1) The antimicrobial activity was strong against test organisms; Bacillus subtilis(ATCC 6633), Escheichia coli(ATCC 25922), Staphylococcus aureus(ATCC 167), Pseudomonas fluorescens(KFCC 32394), Proteus vulgaris and Shigella dysenteriae. (2) The pH value of the agent was 2.0 and the inhibitory activity was lost when it was neutralized at 7.0 of pH and the agent was heat stable at $121^{\circ}C$ for 60 minutes. (3) The ultraviolet light absorption spectra of methanol-acetone extract and TLC fraction exhibited a maximum absorption at 260nm and 224nm respectively. (4) The most purified agent from TLC plate increased about 130-fold in activity. (5) The agent isolated from TLC plate was free from $H_2O_2$ or lactic acid. 4. Bioautographic assy: By means of bioautography of the agent on silica gel of TLC plate a strong inhibitory activity against B. subtilis was demonstrated. 5. Mass spectrometry: The agent obtained from TLC plate was analyzed by mass spectrometry which show the parent peak at m/e 264 suggesting the molecular weight of the compound and molecular group such as [$C_2H{^+}_4$], [CO], [CH=NH], [$C_3{H^}4_7$], [$\begin{array}{rcl}O\\{\parallel}\\CH_3-C\\\end{array}$], [$C_6-H{^+}_{11}$], [$C_5H{^+}_{11}$], [$\begin{array}{rcl}O\\{\parallel}\\C_5H_7-C^+\\\end{array}$] were suggested.

  • PDF