• Title/Summary/Keyword: Biological activities

Search Result 3,865, Processing Time 0.041 seconds

Nitrogen Compounds of Korea Ginseng and their Physiological Significance

  • Park, Hoon;Cho, Byung-Goo;Lee, Mee-Kyoung
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.175-189
    • /
    • 1990
  • Nitrogen compounds of Panax ginseng and their biological activities in plant and animal were reviewed. Major nitrogen compounds found in P. ginseng are free amino acids. Water solilble proteins, indouble proteins and peptides. Minor nitrogen compounds are dencichine. Glycolyroteins, amines, alkaloides, methoxy or alkyl pyrazine derivatives, free nucleosides and nucleic acid bases. 4-methyl-i-thiazoltethanol and pyroglutamic acid the contents of total nitrogen and protein in root Increased until 13 years old which was the highest age tinder investigation. Soluble protein content increased with the root weight and was higher in xylem pith than cortex-epidermis indicating the close relation with root growth. Arginine, which covered 58% of total free amino acids, may serve as storage nitrogen. Arginine seems to be changed into proline in rhizome. threonine in stem and again threonine and arginine in leaf. The greater the root weight the higher the polyamine stimulated Polyamine stimlllated the growth of root callus. Physiological roles of other minor nitrogen compounds are unknown although content is relatively high ((1.if) 6.w). Biochemical and pharmacological activities of some nitrogen compounds for animal were more investigated than physiological role there plant itself. Radiation and U.V protective function (heat stable protein). insulin-like activity in lipogenesis and livolysis (adenosine and pyroglutamic acid), depression of blood sugar content (glycopevtide). htmostatic and nellrotoxic activity (dencichine) and, sedative and hypnotic activity (4-methyl-i-thiazoleethanol) are reported. Heat stable protein increased with root age. The traditional quality criteria appear to be well in accordance with biological activities of nitrogen compounds. Chemical studies of nitrogen compounds seem relatively rare, probably due to difficulty of isolation, subsequently the investigations of biological activities are little.

  • PDF

Nitrogen Compounds of Korea ginseng and Their Physiological Significance (고려인삼의 함질소 화합물과 생리학적 중요성)

  • Park, Hoon;Cho, Byung-Goo;Lee, Mee-Kyoung
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.317-331
    • /
    • 1990
  • Nitrogen compounds of Panax ginseng and their biological activities in plant and animal were reviewed. Major nitrogen combounds found in P. ginseng are free amino acids, Water soluble teins, insoluble proteins and peptides. Minor nitrogen compounds are dencichine. glycol)roteins. amines, alkaloides, methoxy or alkyl pyrazine derivatives. free nucleosides and nllrleir arid bases. 4-me- thymi-5-thiazoleethanol and pyroglutamic acid. The contents of total nitrogen and protein in root increased until 13 years old rvhich was the highest age tinder investigation. Soluble protein content increased With the root weight and was higher in xylem pith than cortex-epidermis indicating the rlosc relation with root growth. Arginine which covered 58% of total free amino aroids may serve as a storage nitrogen. Arginine seems to be changed into proline in rhizome, threonine in stem and again threoning and arginine in leaf. The greater the root weight the higher the polyaminc content. Polyamine stimulated the growth of root callus. Physiological roles of other minor nitrogen compounds are unknown although dencichine content is relatively high (0.5% d.w.). biochemical and pharmatological activities of some nitrogen compounds for animal were more investigated than physiological roll iota plant itself. Radiation and U.V. protective function (heat stable protein), insulin-like activity in lipogenesis and lipolysis (adenosine and pyroglutamic acid), depression of blood sugar content (glycopeptide). hemostatir and nellrotoxic activity (denrichine) and. sedative and hypnotic activity (4-methyl-5-thiazoleethilnol) are reported. Heat stable protein increased with root age. The traditional quality critsria appear to be well in accordance with biological activities of nitrogen compounds. Chemical stlldies of nitrogen compounds seem relatively rare, probably dole to difficulty of isolation, subsequently the investigations of biological activities are little.

  • PDF

Comparison of Marker Components and Biological Activities of Gamiguibi-tang(Jiaweiguipi-tang) Decoction and Commercial Extract Granules (가미귀비탕 탕액과 시판제제의 성분 및 생리활성 비교)

  • Kim, Jung Ok;Baek, Ka Yeon;Lee, Hwa Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.5
    • /
    • pp.333-340
    • /
    • 2018
  • Gamiguibi-tang (GGBT) is a traditional herbal medicine generally used to treat anemia, insomnia, anxiety, and nervousness. GGBT is being commercially produced in the form of extract granule and the quality control methods are specified in the Korean Herbal Pharmacopeia (KHP). However, there is no method to simultaneously analyze compound preparations. In this study, a HPLC method was developed and validated for the simultaneous determination of marker compounds in GGBT. And the contents of marker components and biological activities of the commercial GGBT extract granules (GGBT-2 and GGBT-3) were compared with those of the GGBT decoction (GGBT-1). We confirmed the robustness of simultaneous analytical method by monitoring the contents of the commercial GGBT products and carrying out validation. The marker components of GGBT were geniposide ($8.03{\sim}12.70{\mu}g/mL$), paeoniflorin ($2.79{\sim}4.25{\mu}g/mL$) and glycyrrhizic acid ($5.06{\sim}6.30{\mu}g/mL$). DPPH and ABTS radical scavenging activities were 47.34~63.17% and 21.52~33.61% in the GGBT products concentration of $1,000{\mu}g/mL$, respectively. The GGBT products significantly decreased NO, iNOS and COX-2 production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages in a concentration-dependent manner. The GGBT-2 had higher contents of marker components and biological activities than GGBT-1 and GGBT-3. The research suggest that be used in developing quality control methods for enhancing the quality of herbal medicines.

Identification of Proteins Binding to Decursinol by Chemical Proteomics

  • Kang, Hyo-Jin;Yoon, Tae-Sung;Jeong, Dae-Gwin;Kim, Yong-Mo;Chung, Jin-Woong;Ha, Jong-Seong;Park, Sung-Sup;Ryu, Seong-Eon;Kim, Sang-Hee;Bae, Kwang-Hee;Chung, Sang-J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1427-1430
    • /
    • 2008
  • Decursinol, found in the roots of Angelica gigas Nakai, has been traditionally used to treat anemia and other various diseases. Recently, numerous biological activities such as cytotoxic effect on leukemia cells, and antitumor, neuroprotection, and antibacterial activities have been reported for this compound. Although a number of proteins including protein kinase C, androgen receptor, and acetylcholinesterase were proposed as molecular targets responsible for the activities of decursinol, they are not enough to explain such a diverse biological activity mentioned above. In this study, we employed a chemical proteomic approach, leading to identification of seven proteins as potential proteins interacting with decursinol. Most of the proteins contain a defined ATP or nucleic acid binding domain and have been implied to be involved in the pathogenesis and progression of various human diseases including cancer, autoimmune disorders, or neurodegenerative diseases. The present results may provide clues to understand the molecular mechanism of the biological activities shown by decursinol, an anticancer natural product.

Biological Activities of Phellinus linteus Mycelium Culture with Cassiae Semen Extract on β-Glucuronidase Inhibitory Activity (β-Glucuronidase 저해 활성이 우수한 결명자를 첨가한 상황 균사체 배양액의 생리활성)

  • Oh, Eun-Hee;Park, Jung-Mi;Kim, Sang-Hee;Song, In-Gyu;Han, Nam-Soo;Yoon, Hyang-Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.620-628
    • /
    • 2012
  • We examined the effects of biological activity Phellinus linteus mycelium culture with cassiae semen extract. Firstly, the optimal temperature, initial pH and culture period for mycelial growth in a liquid culture of P. linteus were determined, and they were $30^{\circ}C$, pH 5.0 and 8 days respectively. The five herbal materials were examined against several health functional efficacies, and, as a result, Cassiae semen was chosen, with its superior inhibitory effects in ${\beta}$-glucuronidase inhibitory activity, electron donating activity, ACE inhibitory, and ${\alpha}$-glucosidase inhibitory activities(95.3%, 80.9%, 96.1 and 24.2%, respectively). P. linteus fruit body was investigated on ${\beta}$-glucuronidase inhibitory activity, electron donating activity, ACE inhibitory, and ${\alpha}$-glucosidase inhibitory activities, and they were 54.7%, 81.9%, 30.0% and 20.1%, respectively. Accordingly, C. semen was used in the following experiment, to give an additive functional effect on the P. linteus. As the amount of C. semen in the cultural media increased, mycelial weight and ${\beta}$-glucan contents also increased, but final pH was not influenced. In addition, the ${\beta}$-glucuronidase inhibitory activity, electron donating activity, and ${\alpha}$-glucosidase inhibitory activity increased. P. linteus mycelium culture showed higher activities in the other three tests above, except for electron donating activity, when C. semen was added to the medium before cultivation.

Effects of Combined Treatments of Lithium and Valproate on the Phosphorylation of ERK1/2 and Transcriptional Activity of ELK1 and C-FOS in PC12 Cells (리튬 및 발프로에이트 병용 처치가 PC12 세포에서 ERK1/2 인산화와 ELK1 및 C-FOS 전사활성에 미치는 영향)

  • Cha, Seung Keun;Kim, Se Hyun;Ha, Kyooseob;Shin, Soon Young;Kang, Ung Gu
    • Korean Journal of Biological Psychiatry
    • /
    • v.20 no.4
    • /
    • pp.159-165
    • /
    • 2013
  • Objectives Mechanisms of clinical synergistic effects, induced by co-treatments of lithium and valproate, are unclear. Extracellular signal-regulated kinase (ERK) has been suggested to play important roles in mechanisms of the action of mood stabilizers. In this study, effects of co-treatments of lithium and valproate on the ERK1/2 signal pathway and its down-stream transcription factors, ELK1 and C-FOS, were investigated in vitro. Methods PC12 cells, human pheochromocytoma cells, were treated with lithium chloride (30 mM), valproate (1 mM) or lithium chloride + valproate. The phosphorylation of ERK1/2 was analyzed with immunoblot analysis. Transcriptional activities of ELK1 and C-FOS were analyzed with reporter gene assay. Results Single treatment of lithium and valproate increased the phosphorylation of ERK and transcriptional activities of ELK1 and C-FOS, respectively. Combined treatments of lithium and valproate induced more robust increase in the phosphorylation of ERK1/2 and transcriptional activities of ELK1 and C-FOS, compared to those in response to single treatment of lithium or valproate. Conclusions Co-treatments of lithium and valproate induced synergistic increase in the phosphorylation of ERK1/2 and transcriptional activities of its down-stream transcription factors, ELK1 and C-FOS, compared to effects of single treatment. The findings might suggest potentiating effects of lithium and valproate augmentation treatment strategy.