• Title/Summary/Keyword: Biological activated carbon (BAC)

Search Result 64, Processing Time 0.026 seconds

Removal of NOM Using Biological Rope Media Sedimentation Tank (로프형 미생물 담체 침전조를 이용한 상수원수중의 NOM 제거)

  • 심상준;강연석;김우식;박대원
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.332-336
    • /
    • 2001
  • This paper is intended as an application of the biological rope media sedimentation tank using biodegradability of BAC(Biological activated carbon) to the drinking water treatment system for the removal of NOM. The removal of DOC(Dissolved organic carbon), UV absorbance(UV$\_$254/), and turbidity were evaluated under various operation condition of a biological rope media sedimentation tank such as raw water-media process (Media 1), ozonation-media process (Media 2), and ozonation-coagulation/sedimentation-media process (Media 3). The raw water had DOC concentration of 1.3∼3.4 mg/L, UV$\_$254/ of 0.027∼0.039 cm$\^$-1/, and turbidity of 0.3∼4.5 NTU, respectively. The average DOC concentration were 2.2 mg/L in media 1, 1.8 mg/L in media 2, and 1.3 mg/l in media 3 from raw water, respectively. On the other hand, the DOC concentration in conventional sedimentation tank was 1.5 mg/l. Higher removal of the DOC was noted in media 3 than media 1 and media 2. The UV$\_$254/ of the treated water were 0.037 cm$\^$-1/ in media 1, 0.027 cm$\^$-1/ in media 2, and 0.014 cm$\^$-1/ in media 3 from raw water, respectively The UV$\_$254/ in conventional sedimentation tank was 0.014 cm$\^$-1/ which is similar to that of media 3. Average turbidity of the treated water was 1.1 NTU in media 1, 0.9 NTU in media 2, and 0.5 NTU in media 3, respectively. It is expected that the biological rope media sedimentation tank is a good alternative over the conventional sedimentation process from these results.

  • PDF

A study on the BAC pilot plant in the Duk-san water works (덕산(德山) 정수장(淨水場)에서의 BAC Pilot plant에 관한 연구(硏究))

  • Lee, Sang-Bong;Kim, Dong-Youn;Lim, Jung-A;Lee, Won-Gwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.97-107
    • /
    • 1995
  • Today a conventional water treatment system has many problems. The ozone/GAC process, sometimes termed Biological Activated Carbon(BAC), appeared to be effective for the removal of soluble organic matters in the drinking water. The water quality of Nak-dong river in Pusan, generally shows BDOC 30-40% and NBDOC 60-70%. The pilot plant installed at the Duk-san water works that was been largest treatability(1,650,000ton/day) in Pusan. A experimental water in the pilot plant made use of the water after sand-filteration. Following results are drawn from this study. Initial adsorption velocity($DOC/DOC_o/T$) in the pure adsorption of GAG had a 0.0225, it's velocity changed to 0.006 after ozone added and the optimum ozone dose ranged of $1.4-2.0mgO_3/L$. A experimental water in the pilot plant composed with humic material(78%). Humic material composed with humic acid(20%) and fulvic acid(56%), and it's rate changed to 18 and 50% respectively after ozone added. DOC constantly decreased in the EBCTs and removal efficieny in the 15min of EBCT was 45-50%. It showed the largest removal rate of BDOC in the EBCT 5 and among the season, characteristics of removal varied. The HPC distributed over $10^6-10^7CFU/cm^3$ in the bed depth and among the season, distribution of HPC were differential.

  • PDF

Evaluation of Haloacetic Acid Formation Potential in Drinking Water Treatment Process by Fraction Technique (정수처리 공정에서 용존 유기물질 분류에 의한 haloacetic acid 생성능 평가)

  • Son, Hee-Jong;Hwang, Young-Do;Ryu, Dong-Choon;Jung, Chul-Woo;Lee, Gun;Son, Hyeng-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1655-1662
    • /
    • 2014
  • A comprehensive fractionation technique was applied to a set of water samples obtained along drinking water treatment process with ozonation and biological activated carbon (BAC) process to obtain detailed profiles of dissolved organic matter (DOM) and to evaluate the haloacetic acid (HAA) formation potentials of these DOM fractions. The results indicated that coagulation-sedimentation-sand filtration treatment showed limited ability to remove hydrophilic fraction (28%), while removal of hydrophobic and transphilic fraction were 57% and 40%, respectively. And ozonation and BAC treatment showed limited ability to remove hydrophobic fractions (6%), while removal of hydrophilic and transphilic fractions were 25% and 18%. The haloacetic acid formation potential (HAAFP)/dissolved organic carbon (DOC) of hydrophilic fraction was the highest along the treatment train and HAAFP/DOC of hydrophilic fraction was higher than hydrophobic and transphilic fraction as 23%~30%, because of better removal for hydrophobic fraction both in concentration and reactivity.

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

Removal characteristics of NOM in advanced water treatment using ceramic MF membrane (세라믹막(MF) 고도정수처리에서 NOM 제거 특성)

  • You, Sang-Jun;Park, Sung-Han;Lim, Jae-Lim;Suh, Jeong-Min;Jang, Seong-Ho;Hong, Sung-Chul;Yi, Pyong-In
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.367-376
    • /
    • 2014
  • This study assessed the removal efficiency of NOM which is known as the precursors of DBPs in advanced water treatment using the ceramic membrane filtration, introduced the first in the nation at the Y water treatment plant (WTP). It is generally well-known that the removal of NOM by MF Membrane is very low in water treatment process. But, the result of investigation on removal efficiency of NOM in advanced water treatment using the ceramic membrane was different as follows. The removal rate of organic contaminant by the ceramic membrane advanced water treatment was determined to be 65.5% for the DOC, 85.8% for UV254, and 77 to 86% for DBPFP. The removal rate of pre-ozonation was found to be 6 to 15% more effective compared with the pre-chlorination. The removal rate of DOC and $UV_{254}$ in biological activated carbon(BAC) process was over 50% and 75%, respectively although the rate was decreased 10 ~ 20% according to analysis items in converting from GAC to BAC.

Applicability Evaluation of Two-stages and Dual Media Filtration System by the Small-scale Pilot Plant (이단이층 복합여과시스템의 소규모 파일롯 플랜트 적용성 평가)

  • Woo, Dal-Sik;Song, Si-Byum;Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.857-864
    • /
    • 2009
  • This study aimed at developing the two stage and dual filtration system. It has a sand + activated carbon layer above the underdrain system and a sand layer above the middledrain system for pretreatment. When retrofitting an old filter bed or designing a new one, this technology can substitute the existing sand filter bed without requiring a new site. In order to extend the filtering duration, the upper layer of the filter bed consists of the rapid sand filtration with large particles which pre-treats and removes coarse particles and turbidity matters. The middle layer has biological activated carbon(BAC) and granular activated carbon(GAC) to eliminate dissolved organic matters, disinfection by-products precursors etc. The lower layer consists of the sand filtration for the post filtering mode. In this study, a pilot plant of two stage and dual filtration system was operated for 4 months in the S water treatment plant in Kyounggi-Do. The stability of turbidity was maintained below 1NTU. The TOC, THMFP and HAAFP were removed about 90% by two stage and dual filtration system, which is almost 2 times higher than S WTP. From analysis result of HPC along the depth of activated carbon + sand layer at 2nd stage, microorganism was mostly not detected, however, increment of HPC was shown as it becomes deeper. It indicates that growth of microorganism is occurred at activated carbon layer.

Removal of Dissolved Organic Matters in Drinking Water by GAC adsorption using RSSCT (RSSCT를 이용한 GAC의 상수원수 내 용존유기물질 제거)

  • Kim, Young Il;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.727-736
    • /
    • 2006
  • Granular activated carbon (GAC) has been identified as a best available technology (BAT) by the United States Environmental Protection Agency (USEPA) for removal disinfection by-product (DBP) precursors, such as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Rapid small-scale column test (RSSCT) were used to investigate four types of carbon (F400, Norit1240, Norit40S, and Aquasorb1500) for their affinity to absorb natural organic matter (NOM). DOC, $UV_{254}$, and Total dissolved nitrogen (TON) concentrations were measured in the column effluent to track GAC breakthrough. DOC and $UV_{254}$ breakthrough occurred at around 3500 bed volumes (BVs) of operation for all GACs investigated. The $UV_{254}$ breakthrough curves showed 33% to 48% at 8000 BVs, when the DOC was 48% to 65%. All GACs showed greater removal in DOC than $UV_{254}$. The NORIT1240 GAC was determined to have the highest adsorption capacity for DOC and $UV_{254}$. The removal of nitrate (NOTN) had not broken through over BVs. The initial TON breakthrough curves were started around 50%, when the DOC breakthrough was only 10 % at 500 BVs. The curves were gradually increased after 3500 BVs and approximately 69% through 81% of TON breakthrough occurred at 8000 BVs. All of the GACs were able to remove TON, in the case of this investigation the majority of the TON was present as DON. Because nitrate nitrogen was seldom removed and ammonium nitrogen ($NH_3-N$) was not detected in the effluent from RSSCTs even though raw water. The carbon usage rate of DOC was from 2 to 6 times less than that of TON. The NORIT1240 GAC demonstrated the best performance in terms of DOC removal, while the F400 GAC was best in terms of TON removal. Excitation emission matrix(EEM) analysis was used to show that GAC adsorption successfully removed most of Humic-like DOC and Fulvic-like DOCs. However, soluble microbial product(SMP)-like DOC in the absence of raw water were detected in the NORIT40S and Aquasorb1500 GAC. The authors assumed that this results is due probably to the part of GAC in the RSSCT which was converted into biological activated carbon(BAC). To compare with organics removal by GAC according to preloading, the virgin GACs had readily accessible sites that were adsorbed DOC more rapidly than preloaded GACs, but the TDN removal had not showed differences between those GACs.

Formation behaviour of Bromate in Processes of Advanced Water Treatment System using Nakdong river water (고도정수처리 공정에서 브로메이트의 거동 평가)

  • Kim, Young-Jin;Hyun, Kil-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.605-610
    • /
    • 2011
  • The objectives of this study are to investigate a bromate behaviour in the processes of advanced water treatment system (AWTS: preozonation, coagulator-settler, rapid sand filter, postozonation, biological activated carbon (BAC) beds) and to investigate the effects of ozonation, pH and ammonia nitrogen on bromate (${BrO^-}_3$) formation. As a result, $BrO_3$ was not detected in the processes of the AWTS without ozonation, while it was detected in a preozonated and postozonated water. For $BrO_3$ formation during June to November, the $BrO_3$ concentration of <9.4${\mu}g/L$ was observed in postozonated water, while it was reduced to about 46% by BAC beds. When applied ozone dosage and ozone contact time for influent with $Br^-$ of <0.3mg/L were 0.5-2.0mg/L.min and 10 min., $BrO_3$ concentration increased with increasing ozone dosage. Longer contact time and lower ozone level also was needed to inhibit the formation of $BrO_3$. At ozone dosage of 1.4 mg/L.min, the formation rate of $BrO_3$ increased with increase of pH value. When $NH_4-N$ concentration increased from 0.1mg/L to 0.4mg/L, $BrO_3$ concentration decreased to about 38%. These results revealed that $BrO_3$ concentration increased with increasing Br level, ozone dosage, and pH value, while it decreased with increase of $NH_4-N$ concentration.

Caffeine and Carbamazepine: Detection in Nakdong River Basin and Behavior under Drinking Water Treatment Processes (Caffeine과 Carbamazepine: 낙동강 수계에서의 검출 및 정수처리 공정에서의 거동)

  • Son, Hee-Jong;Yeom, Hoon-Sik;Jung, Jong-Moon;Jang, Seong-Ho;Kim, Han-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.837-843
    • /
    • 2012
  • The aims of this study were to investigated the occurrence of caffeine and carbamazepine in Nakdong river basin (8 mainstreams and 2 tributaries) and the behavior of caffeine and carbamazepine under drinking water treatment processes (conventional and advanced processes). The examination results showed that caffeine was detected at all sampling sites (5.4~558.5 ng/L), but carbamazepine was detected at five sampling sites (5.1~79.4 ng/L). The highest concentration level of caffeine and carbamazepine in the mainstream and tributaries in Nakdong river were Goryeong and Jinchun-cheon, respectively. These pharmaceutical products were completely removed when they were subject to conventional plus advanced processes of drinking water treatment processes. Conventional processes of coagulation, sedimentation and sand-filtration were not effective for their removal, while advanced processes of ozonation and biological activated carbon (BAC) filtration were effective. Among these pharmaceuticals, carbamazeoine was more subject to ozonation than caffeine.

Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process (정수처리공정상 염소소독부산물형성에 미치는 오존의 영향)

  • Seong, Nak Chang;Park, Hyeon Seok;Lee, Seong Sik;Lee, Yong Hui;Lee, Jong Pal;Yun, Tae Gyeong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.