• 제목/요약/키워드: Biological Synthesis

검색결과 1,240건 처리시간 0.031초

솔비탄 메타크릴레이트의 효소적 합성 - 반응온도와 아실 공여체의 영향 - (Enzymatic Synthesis of Sorbitan Methacrylate Effect of Reaction Temoerature and Acyl Donor)

  • 정귀택;박은수;변기영;이혜진;김인홍;조영일;김해성;송요순;김도형;류화원;이우태;선우창신;박돈희
    • KSBB Journal
    • /
    • 제19권5호
    • /
    • pp.385-389
    • /
    • 2004
  • In this research, the chemo-enzymatic synthesis of sorbitan methacrylate was investigated to optimize reaction conditions. Firstly, sorbitan was manufactured by sorbitol cyclic reaction in the presence of p-toluenesulfonic acid (p-TSA) as catalyst material. Secondly, sorbitan methacrylate was synthesized by immobilized lipase Novozyme 435 with acyl donors in t-butanol. As a result of enzymatic synthesis of sorbitan methacrylate, the conversion yield reached about $65\%$ in the condition of initial sorbitan conc. 50 g/L, enzyme content $3\%$ (w/v) , molar ratio 1:3, reaction temperature 50^{circ}C and reaction time 42 hrs using methyl methacrylate as acyl donor. Comparing with acyl donors and reaction temperature, the conversion yield reached about 18, 65 and $80\%$ with methacrylic acid, methyl methacrylate and vinyl methacrylate as acyl donor, respectively. And optimum reaction temperature was 60, 50, and 50^{circ}C, respectively

Solid Phase Synthesis of 3-(4-Hydroxyphenyl)coumarin: Preliminary Experiments for Combinatorial Synthesis of Substituted 3-Phenylcoumarin Derivatives

  • Bae, Hoon;Kim, Hak-Sung
    • Archives of Pharmacal Research
    • /
    • 제27권8호
    • /
    • pp.811-815
    • /
    • 2004
  • Coumarin and its derivatives occur widely in nature. Many attempts were made for synthesis of various coumarin derivatives because of their interesting biological activities. In this study, solid phase synthetic approach of 3-(4-hydroxyphenyl)coumarin was achieved for combinatorial synthesis of substituted 3-phenylcoumarin analogues. Starting from 4-hydroxyphenylacetic acid methyl ester, release of 3-(4-hydroxypnehyl)coumarin from polymer support was accom-plished.

Synthetic Cephalosporin Derivatives

  • Oh, Chang-Hyun;Park, Sang-Woo;Cho, Jung-Hyuck
    • Bulletin of the Korean Chemical Society
    • /
    • 제11권4호
    • /
    • pp.323-327
    • /
    • 1990
  • The synthesis and some biological properties of $7{\beta} $-[2-(Z)-(2-aminothiazole-4-yl)-2-(N-substitutedcar bonyl)ethoxyiminoacetamido]-3-vinyl-3-cephem-4- carboxylic acid are described. The effect of substituents on the carbamoly group in the 7-side chain were investigated in order to improve antibacterial activities. Two of these new orally active $7{\beta} $-lactam derivatives showed wide expanded antimicrobial activities against Gram-positive and Gram-negative bacteria, including Pseudomonas aeruginosa, as well as good stability to $7{\beta} $ -lactamases.

초임계 이산화탄소와 이온성 액체를 이용한 Propylene Carbonate 합성 (Propylene Carbonate Synthesis using Supercritical $CO_2$ and Ionic Liquid)

  • 김병헌;장성현;민세련;김화용
    • 청정기술
    • /
    • 제17권1호
    • /
    • pp.37-40
    • /
    • 2011
  • 몇몇 이온성 액체는 이산화탄소를 고정화하여 카보네이트로 전환해주는 반응의 촉매이자 용매로 적합하다. 이온성 액체를 사용함으로써, 합성 공정은 촉매 재활용이 용이하고 휘발성 물질이나 해로운 유기 용매가 불필요하다는 측면에서 보다 환경적이고 간단해질 수 있다. 본 연구에서는 이산화탄소와 이온성 액체를 이용하여 $60{\sim}80^{\circ}C$, 140bar의 온도, 압력 범위에서 프로필렌 옥사이드가 카보네이트로 얼마나 전환되는지 측정하였다. 그 결과, 최적의 조건을 찾았고 그 조건 하에 최대 수율을 얻었다.

Enhanced In Vitro Protein Synthesis Through Optimal Design of PCR Primers

  • Ahn Jin-Ho;Son Jeong-Mi;Hwang Mi-Yeon;Kim Tae-Wan;Park Chang-Kil;Choi Cha-Yong;Kim Dong-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.355-359
    • /
    • 2006
  • The functional stability of mRNA is one of the crucial factors affecting the efficiency of in vitro translation. As the rapid degradation of mRNA in the cell extract (S30 extract) causes early termination of the translational reactions, extending the mRNA half-life will improve the productivity of the in vitro protein synthesis. Thus, a simple PCR-based method is introduced to increase the stability of mRNA in an S30 extract. The target genes are PCR-amplified with primers designed to make the ends of the transcribed mRNA molecule anneal to each other. When compared with normal mRNA, the mRNA with the annealing sequences resulted in an approximately 2-fold increase of protein synthesis in an in vitro translation reaction. In addition, sequential transcription and translation reactions in a single tube enabled direct protein expression from the PCR-amplified genes without any separate purification of the mRNA.

Eicosapentaenoic Acid (EPA) Biosynthetic Gene Cluster of Shewanella oneidensis MR-1: Cloning, Heterologous Expression, and Effects of Temperature and Glucose on the Production of EPA in Escherichia coli

  • Lee, Su-Jin;Jeong, Young-Su;Kim, Dong-Uk;Seo, Jeong-Woo;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.510-515
    • /
    • 2006
  • The putative EPA synthesis gene cluster was mined from the entire genome sequence of Shewanella oneidensis MR-1. The gene cluster encodes a PKS-like pathway that consists of six open reading frames (ORFs): ORFSO1602 (multi-domain beta-ketoacyl synthase, KS-MAT-4ACPs-KR), ORFSO1600 (acyl transferase, AT), ORFSO1599 (multi-domain beta-ketoacyl synthase, KS-CLF-DH-DH), ORFSO1597 (enoyl reductase, ER), ORFSO1604 (phosphopentetheine transferase, PPT), and ORFSO1603 (transcriptional regulator). In order to prove involvement of the PKS-like machinery in EPA synthesis, a 20.195-kb DNA fragment containing the genes was amplified from S. oneidensis MR-1 by the long-PCR method. Its identity was confirmed by the methods of restriction enzyme site mapping and nested PCR of internal genes orfSO1597 and orfSO1604. The DNA fragment was cloned into Escherichia coli using cosmid vector SuperCos1 to form pCosEPA. Synthesis of EPA was observed in four E. coli clones harboring pCosEPA, of which the maximum yield was 0.689% of the total fatty acids in a clone designated 9704-23. The production yield of EPA in the E. coli clone was affected by cultivation temperature, showing maximum yield at $20^{\circ}C$ and no production at $30^{\circ}C$ or higher. In addition, production yield was inversely proportional to glucose concentration of the cultivation medium. From the above results, it was concluded that the PKS-like modules catalyze the synthesis of EPA. The synthetic process appears to be subject to regulatory mechanisms triggered by various environmental factors. This most likely occurs via the control of gene expression, protein stability, or enzyme activity.

Purification and Biochemical Characterization of Sucrose Synthase from the Cytosolic Fraction of Chickpea (Cicer arietinum L. cv. Amethyst) Nodules

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • 제42권1호
    • /
    • pp.12-18
    • /
    • 1999
  • Sucrose synthase (EC 2.4.1.13) has been purified from the plant cytosolic fraction of chickpea (Cicer arietinum L. cv. Amethyst) nodules. The native enzyme had a molecular mass of $356{\pm}15kD$. The subunit molecular mass was $87{\pm}2kD$, and a tetrameric structure is proposed for sucrose synthase of chickpea nodule. Optimum activities in the sucrose cleavage and synthesis directions were at pH 6.5 and 9.0, respectively. The purified enzyme displayed typical hyperbolic kinetics with substrates in cleavage and synthesis reactions. Chickpea nodules sucrose synthase had a high affinity for UDP ($K_m$, $8.0{\mu}M$) and relatively low affinities for ADP ($K_m$, 0.23 mM), CDP ($K_m$, 0.87 mM), and GDP ($K_m$, 1.51 mM). The $K_m$ for sucrose was 29.4 mM. In the synthesis reaction, UDP-glucose ($K_m$, $24.1{\mu}M$) was a more effective glucosyl donor than ADP-glucose ($K_m$, 2.7 mM), and the $K_m$ for fructose was 5.4 mM. Divalent cations, such as $Ca^{2+}$, $Mg^{2+}$, and $Mn^{2+}$, stimulated the enzyme activity in both the cleavage and synthesis directions, and the enzyme was very sensitive to inhibition by $HgCl_2$ and $CuSO_4$.

  • PDF