• 제목/요약/키워드: Biological Synthesis

검색결과 1,252건 처리시간 0.022초

Synthesis of Selective Butyrylcholinesterase Inhibitors Coupled between α-Lipoic Acid and Polyphenols by Using 2-(Piperazin-1-yl)ethanol Linker

  • Yeun, Go Heum;Lee, Seung Hwan;Lim, Yong Bae;Lee, Hye Sook;Won, Moo-Ho;Lee, Bong Ho;Park, Jeong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1025-1029
    • /
    • 2013
  • In the previous paper (Bull. Korean Chem. Soc., 2011, 32, 2997), the hybrid molecules between ${\alpha}$-lipoic acid (ALA) and polyphenols (PPs) connected with neutral 2-(2-aminoethoxy)ethanol linker (linker-1) showed new biological activity such as butyrylcholinesterase (BuChE) inhibition. In order to increase the binding affinity of the hybrid compounds to cholinesterase (ChE), the neutral 2-(2-aminoethoxy)ethanol (linker 1) was switched to the cationic 2-(piperazin-1-yl)ethanol linker (linker 2). The $IC_{50}$ values of the linker-2 hybrid molecules for BuChE inhibition were lower than those of linker-1 hybrid molecules (except 9-2) and they also had the same great selectivity for BuChE over AChE (> 800 fold) as linker-1 hybrid molecules. ALA-acetyl caffeic acid (10-2, ALA-AcCA) was shown as an effective inhibitor of BuChE ($IC_{50}=0.44{\pm}0.24{\mu}M$). A kinetic study using 7-2 showed that it is the same mixed type inhibition as 7-1. Its inhibition constant (Ki) to BuChE is $4.3{\pm}0.09{\mu}M$.

팜유로부터 바이오디젤 연료를 합성하는 초임계유체반응에서 지방산메틸에스테르의 함량에 미치는 첨가물의 영향 (Effect of Additives on the Contents of Fatty Acid Methyl Esters of Biodiesel Fuel in the Transesterification of Palm oil with Supercritical Methanol)

  • 이홍식;최준혁;신영호;임영섭;한종훈;김화용;이윤우
    • Korean Chemical Engineering Research
    • /
    • 제46권4호
    • /
    • pp.747-751
    • /
    • 2008
  • 수분이나 유리지방산 함량이 높은 폐식용유의 적용 가능성을 알아보기 위하여 초임계메탄올을 이용한 바이오디젤 연료의 합성에서 첨가물이 미치는 영향에 대해 실험하였다. 회분식 반응기를 이용하여 물, 유리지방산, 항산화물질의 함량을 달리하여 전이에스테르화반응을 진행하였고, 기체크로마토그래피를 이용해 시료에 포함된 지방산메틸에스테르의 양을 측정하였다. 수분이 증가함에 따라 생성되는 지방산메틸에스테르의 함량이 약간 감소했으나 염기촉매나 산촉매에 비해서는 그 폭이 아주 작았다. 유리지방산, 비타민 E, ${\beta}$-카로틴의 함량 변화에 따른 영향은 거의 없었다.

Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages

  • Kim, Ga-Young;Jeong, Hana;Yoon, Hye-Young;Yoo, Hye-Min;Lee, Jae Young;Park, Seok Hee;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제53권12호
    • /
    • pp.640-645
    • /
    • 2020
  • Suppressors of cytokine signaling (SOCS) exhibit diverse anti-inflammatory effects. Since ROS acts as a critical mediator of inflammation, we have investigated the anti-inflammatory mechanisms of SOCS via ROS regulation in monocytic/macrophagic cells. Using PMA-differentiated monocytic cell lines and primary BMDMs transduced with SOCS1 or shSOCS1, the LPS/TLR4-induced inflammatory signaling was investigated by analyzing the levels of intracellular ROS, antioxidant factors, inflammasome activation, and pro-inflammatory cytokines. The levels of LPS-induced ROS and the production of pro-inflammatory cytokines were notably down-regulated by SOCS1 and up-regulated by shSOCS1 in an NAC-sensitive manner. SOCS1 up-regulated an ROS-scavenging protein, thioredoxin, via enhanced expression and binding of NRF-2 to the thioredoxin promoter. SOCS3 exhibited similar effects on NRF-2/thioredoxin induction, and ROS downregulation, resulting in the suppression of inflammatory cytokines. Notably thioredoxin ablation promoted NLRP3 inflammasome activation and restored the SOCS1-mediated inhibition of ROS and cytokine synthesis induced by LPS. The results demonstrate that the anti-inflammatory mechanisms of SOCS1 and SOCS3 in macrophages are mediated via NRF-2-mediated thioredoxin upregulation resulting in the downregulation of ROS signal. Thus, our study supports the anti-oxidant role of SOCS1 and SOCS3 in the exquisite regulation of macrophage activation under oxidative stress.

突然變異誘發原에 의한 DNA回復合成과 染色體交換과의 聯關性에 관한 硏究 (Studies on the Chemical Nutagen-induced DNA Repair Synthesis in Relation to Chromosome Exchanges)

  • Park, Sang-Dai;Um, Kyung-Il;Park, Kyung-Hee
    • 한국동물학회지
    • /
    • 제19권4호
    • /
    • pp.179-186
    • /
    • 1976
  • DNA 回復合成과 染色體交換과의 聯關性을 추구하기 위해 알킬화제 突然變異誘發原인 MMC, MNNG, MMS를 培養한 사람의 淋巴球와 HeLa $S_3$ 細胞에 處理하여 다음과 같은 結果를 얻었다. 1. 이들 알킬화제에 의해 誘發된 DNA 回復合成은 MMC, MNNG, MMS의 濃度가 각각 $3 \\times 10^-7, 1 \\times 10^-6, 5 \\times 10^-4 M$에서 檢出되었다. 이는 MMC가 가장 强力한 DNA 回復合成 誘發原이며 다음이 MNNG 그 다음이 MMS임을 뜻한다. MMC와 MNNG는 濃度增加에 따른 DNA 回復合成에 큰 차이를 보이지 않으나 MMS는 현저한 增加를 보인다. 2. MMC에 의한 染色體異常은 濃度가 增加함에 따라 그 率에 현저한 增加를 보이나 染色體交換率에는 별차이가 없다. 그러나 MNNG는 染色體異常率에 차가 없고 染色體交換은 觀察되지 않았다. MMS는 染色體異常 및 染色體交換 모두 濃度의 增加에 따른 그 率의 增加를 나타낸다. 이러한 結果는 突然變異誘發原에 의한 DNA 回復合成이 染色體交換 및 染色體異常과 직접적인 연관성이 없음을 시사하는 것이다.

  • PDF

Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE2 Production

  • Kim, Sung Soo;Vo, Van Anh;Park, Haeil
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권11호
    • /
    • pp.3219-3223
    • /
    • 2014
  • Ochnaflavone, a naturally occurring biflavonoid composed of two units of apigenin (5,7,4'-trihydroxyflavone) joined via a C-O-C linkage, was first synthesized and evaluated its inhibitory activity on $PGE_2$ production. Total synthesis was accomplished through modified Ullmann diaryl ether formation as a key step. Coupling reactions of 4'-halogenoflavones and 3'-hydroxy-5,7,4'-trimethoxyflavone were explored in diverse reaction conditions. The reaction of 4'-fluoro-5,7-dimethoxyflavone (2c) and 3'-hydroxy-5,7,4'-trimethoxyflavone (2d) in N,N-dimethylacetamide gave the coupled compound 3 in 58% yield. Synthetic ochnaflavone strongly inhibited PGE2 production ($IC_{50}=1.08{\mu}M$) from LPS-activated RAW 264.7 cells, which was due to reduced expression of COX-2. On the contrary, the inhibition mechanism of wogonin was somewhat different from that of ochnaflavone although wogonin, a natural occurring anti-inflammatory flavonoid, showed strong inhibitory activity of $PGE_2$ production ($IC_{50}=0.52{\mu}M$), and seems to be COX-2 enzyme inhibition. Our concise total synthesis of ochnaflavone enable us to provide sufficient quantities of material for advanced biological studies as well as to efficiently prepare derivatives for structure-activity relationship study.

Biological Differences between Hanwoo longissimus dorsi and semimembranosus Muscles in Collagen Synthesis of Fibroblasts

  • Subramaniyan, Sivakumar Allur;Hwang, Inho
    • 한국축산식품학회지
    • /
    • 제37권3호
    • /
    • pp.392-401
    • /
    • 2017
  • Variations in physical toughness between muscles and animals are a function of growth rate and extend of collagen type I and III. The current study was designed to investigate the ability of growth rate, collagen concentration, collagen synthesizing and degrading genes on two different fibroblast cells derived from Hanwoo m. longissimus dorsi (LD) and semimembranosus (SM) muscles. Fibroblast cell survival time was determined for understanding about the characteristics of proliferation rate between the two fibroblasts. We examined the collagen concentration and protein expression of collagen type I and III between the two fibroblasts. The mRNA expression of collagen synthesis and collagen degrading genes to elucidate the molecular mechanisms on toughness and tenderness through collagen production between the two fibroblast cells. From our results the growth rate, collagen content and protein expression of collagen type I and III were significantly higher in SM than LD muscle fibroblast. The mRNA expressions of collagen synthesized genes were increased whereas the collagen degrading genes were decreased in SM than LD muscle. Results from confocal microscopical investigation showed increased fluorescence of collagen type I and III appearing stronger in SM than LD muscle fibroblast. These results implied that the locomotion muscle had higher fibroblast growth rate, leads to produce more collagen, and cause tougher than positional muscle. This in vitro study mirrored that background toughness of various muscles in live animal is likely associated with fibroblast growth pattern, collagen synthesis and its gene expression.

치주인대 세포의 생물학적 특성 (Biological Characteristics of Human Periodontal Ligament Cells)

  • 박귀운;신형식;유형근
    • Journal of Periodontal and Implant Science
    • /
    • 제27권2호
    • /
    • pp.291-303
    • /
    • 1997
  • Periodontal ligament cells may have a role in the regulation of hard and soft periodontal tissues, but their specific function has not yet to be determined. To evaluate further their role in periodontal regeneration, they were examined for osteoblast-like behavior. Periodontal ligament cells and gingival fibroblasts were primarily cultured from extracted premolar with non-periodontal diseases. Cells were cultured with DMEM at $37^{\circ}C$, 5% $CO_2$, 100% humidity incubator, and as a measure of cell characterization, it was examined that the morphology, alkaline phosphatase activity, collagen synthesis, and immunocytochemistry for osteonectin, osteocalcin, and collagen type I. Healthy periodontal ligament cells has more osteoblastic-like cell property in alkaline phosphatase activity. and collagen synthesis than gingival fibroblast. Immunocytochemistry localization explained that calcitonin were expressed in periodontal ligament cells only, and osteonectin and type I collagen were produced in both cells simultaneously. This results indicate that the growth characteristics of periodontal ligament cells and gingival fibroblasts exhibit some differences in proliferative rates and biochemical synthesis. The differences may help to calrify the role such cells play in the regenearation of periodontal tissues.

  • PDF

Decaschistia intermedia Craib 추출물의 멜라닌 합성 억제 효능 (Inhibitory Effects of Decaschistia intermedia Craib Extract on Melanin Synthesis)

  • 임리진;추병삼;이상우;;송희상
    • 생약학회지
    • /
    • 제51권3호
    • /
    • pp.171-177
    • /
    • 2020
  • The purpose of this study was to investigate the anti-melanogenic effects of the extracts from Decaschistia intermedia craib (EDI). In this study, we examined the effects of EDI on mushroom tyrosinase activity in in vitro, melanin contents, and expression levels of mRNA and proteins of melanogenesis-related genes in B16F10 melanoma cells. The treatment of EDI significantly decreased both tyrosinase activity and melanin contents in B16F10 cells with dose-dependent manner. In addition, we found that the expression of mRNA or proteins of melanogenic proteins, such as, a-melanocyte-stimulating hormone (a-MSH)-induced microphthalmia associated transcription factor (MITF), tyrosinase, tyrosinase related protein-1 (TRP-1), and TRP-2 was significantly downregulated with dose-dependent manner in the EDI-treated B16F10 cells compared to controls. Our results suggest that the EDI inhibits cellular melanogenesis through downregulation of a-MSH-stimulated melanin synthesis. Thus EDI may potentially be an effective whitening agent.

Inhibitory effects of Kirengeshoma koreana Nakai on Melanogenesis in B16F10 melanoma cells

  • Jang, Tae-Won;Choi, Ji-Soo;Mun, Jeong-Yun;Im, Jong-Yun;Nam, Su-Hwan;Kim, Do-Wan;Lee, Seung-Hyun;Park, Jae-Ho
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.117-117
    • /
    • 2019
  • Kirengeshoma koreana Nakai (K. koreana)was Saxifragaceae and rare plants in Korea, which is classified as an Critically Endangered (CR) species in Korea. Therefore, most of the studies on it were ecological and taxonomic, and there are no studies on biological activity. In this study, we evaluated the whitening activity of K. koreana extract (KKE). Melanogenesis Inhibitory effects were demonstrated by western-bot and RT-PCR for the effects of KKE on MITF, tyrosinase, TRP-1 and TRP-2 in IBMX-treated B16F10 melanoma cells. IBMX were reported as melanin synthesis enhancers. It could increase intracellular melanin synthesis by activation of the microphthalmia-associated transcription factor (MITF) signaling pathway. KKE showed no cytotoxicity at B16F10. In addition, KKE effectively inhibited the protein and mRNA levels of MITF, tyrosinase, TRP-1 and TRP-2. In conclusion, KKE inhibited melanin synthesis by inhibiting the expression of MITF and its downstream pathways tyrosinase, TRP-1 and TRP-2. Therefore, it was confirmed that K. koreana is a valuable resource for functional cosmetic and biomaterials.

  • PDF

One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions

  • Tam, Tran Van;Choi, Won Mook
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1255-1260
    • /
    • 2018
  • In this work, a green and simple one-pot route was developed for the synthesis of highly fluorescent aminofunctionalized graphene quantum dots (a-GQDs) via hydrothermal process without any further modification or surface passivation. We synthesized the a-GQDs using glucose as the carbon source and ammonium as a functionalizing agent without the use of a strong acid, oxidant, or other toxic chemical reagent. The as-obtained aGQDs have a uniform size of 3-4 nm, high contents of amino groups, and show a bright green emission with high quantum yield of 32.8%. Furthermore, the a-GQDs show effective fluorescence quenching for $Cu^{2+}$ ions which can serve as effective fluorescent probe for the detection of $Cu^{2+}$. The fluorescent probe using the obtained aGQDs exhibits high sensitivity and selectivity toward $Cu^{2+}$ with the limit of detection as low as 5.6 nM. The mechanism of the $Cu^{2+}$ induced fluorescence quenching of a-GQDs can be attributed to the electron transfer by the formation of metal complex between $Cu^{2+}$ and the amino groups on the surface of a-GQDs. These results suggest great potential for the simple and green synthesis of functionalized GQDs and a practical sensing platform for $Cu^{2+}$ detection in environmental and biological applications.