• 제목/요약/키워드: Biological Synthesis

검색결과 1,240건 처리시간 0.028초

Starch Phosphorylase and its Inhibitor from Sweet Potato Root

  • Chang, Tsung-Chain;Su, Jong-Ching
    • 생약학회지
    • /
    • 제17권2호
    • /
    • pp.134-138
    • /
    • 1986
  • Based on a tracer study, starch phosphorylase was implicated as an agent in the starch synthesis in sweet potato roots. The enzyme was purified from the tissue as a cluster of isozymes with an average mw of 205K (fresh roots) or 159K (roots stored for 3 mon.). On SDS polyacrylamide gel electrophoresis, one large subunit of 98K mw and several small ones of 47${\sim}57K mw were observed. From the mw data and the results of peptide mapping and immunoelectrophoretic blotting using mono- and polyclonal antibodies, it was deduced that a large part of the large subunit was cleaved at the middle part of the peptide chain to give rise to the small subunits, and on storage, the enzyme molecules were further modified by proteolysis. During the course of phosphorylase purification, a proteinaceous inhibitor of the enzyme was isolated. It had a mw of 250K and was composed of 5 identical subunits of 51K mw. In the direction of starch synthesis, the inhibitor showed a noncompetitive kinetics with a Ki of $1.3{\times}10^{-6}\;M$. By immunohistochemical methods, both the enzyme and the inhibitor were located on the cell wall and amyloplast. Crossreacting materials of the inhibitor were present in spinach leaf, potato tuber and rice grain. These findings indicate the wide occurrence of the inhibitor and also imply its possible participation in regulating starch phosphorylase activity in vivo.

  • PDF

Fermentation Characteristics and Microbial Protein Synthesis in an In Vitro System Using Cassava, Rice Straw and Dried Ruzi Grass as Substrates

  • Sommart, K.;Parker, D.S.;Rowlinson, P.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권8호
    • /
    • pp.1084-1093
    • /
    • 2000
  • An in vitro gas production system was used to investigate the influence of various substrate mixtures on a natural mix of rumen microbes by measurement of fermentation end-products. The treatments were combinations of cassava (15.0, 30.0 and 45.0%) with different roughage sources (ruzi grass, rice straw or urea treated rice straw). Microbial biomass, net $^{15}N$ incorporation into cells, volatile fatty acid production, gas volume and rate of gas production increased linearly with increasing levels of cassava inclusion. There was also an effect of roughage source, with rice straw being associated with the lowest values for most parameters whilst similar values were obtained for ruzi grass and urea treated rice straw. The results suggest that microbial growth and fermentation rate increase as a function of readily available carbohydrate in the substrate mixture. A strong linear relationship between $^{15}N$ enrichment, total volatile fatty acid production and gas production kinetics support the suggestion of the use of the in vitro gas production system as a tool for screening feedstuffs as an initial stage of feed evaluation.

Extra-gonadal sites of estrogen biosynthesis and function

  • Barakat, Radwa;Oakley, Oliver;Kim, Heehyen;Jin, Jooyoung;Ko, CheMyong Jay
    • BMB Reports
    • /
    • 제49권9호
    • /
    • pp.488-496
    • /
    • 2016
  • Estrogens are the key hormones regulating the development and function of reproductive organs in all vertebrates. Recent evidence indicates that estrogens play important roles in the immune system, cancer development, and other critical biological processes related to human well-being. Obviously, the gonads (ovary and testis) are the primary sites of estrogen synthesis, but estrogens synthesized in extra- gonadal sites play an equally important role in controlling biological activities. Understanding non-gonadal sites of estrogen synthesis and function is crucial and will lead to therapeutic interventions targeting estrogen signaling in disease prevention and treatment. Developing a rationale targeting strategy remains challenging because knowledge of extra-gonadal biosynthesis of estrogens, and the mechanism by which estrogen activity is exerted, is very limited. In this review, we will summarize recent discoveries of extra-gonadal sites of estrogen biosynthesis and their local functions and discuss the significance of the most recent novel discovery of intestinal estrogen biosynthesis.

Diphlorethohydroxycarmalol, Isolated from Ishige okamurae, Increases Prostaglandin E2 through the Expression of Cyclooxygenase-1 and -2 in HaCaT Human Keratinocytes

  • Kang, Gyeoung-Jin;Han, Sang-Chul;Koh, Young-Sang;Kang, Hee-Kyoung;Jeon, You-Jin;Yoo, Eun-Sook
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.520-525
    • /
    • 2012
  • Prostaglandin (PG) $E_2$, the most abundant prostaglandin in the human body, is synthesized from arachidonic acid via the actions of cyclooxygenase (COX) enzymes. $PGE_2$ exerts homeostatic, cytoprotective, inflammatory, and in some cases anti-inflammatory effects. Also, it has been reported that $PGE_2$ is involved in hair growth. Diphlorethohydroxycarmalol (DPHC) is a phlorotannin compound isolated from the brown algae Ishige okamurae, with various biological activities in vitro and in vivo. In this study, the biological effect and mechanism of action of DPHC on prostaglandin synthesis in HaCaT human keratinocytes was examined. The results showed that, in these cells, DPHC significantly and dose-dependently induced $PGE_2$ synthesis by increasing the protein and mRNA levels of COX-1 and COX-2. Interestingly, DPHC-induced COX-1 expression preceded that of COX-2. Also, while both rofecoxib and indomethacin inhibited $PGE_2$ production, the latter was seems to be the more potent. From above results, we can expect that DPHC has some beneficial effects via increasing of $PGE_2$ production.

만형자 용매 분획물의 미백 개선 효과 (Whitening Effects of Solvent Fractions Isolated from Vitex rotundifolia)

  • 유재묘;김동희;손준호
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.266-271
    • /
    • 2015
  • 최근에는 hyper-pigmentation에 대한 제품 개발을 위해 melanogenesis의 경로에 대한 이해를 위해 많은 노력을 하고 있다. 이에 따라 본 연구에서는 만형자(Vitex rotundifolia)의 depigmentation에 대한 효과를 조사하였다. B16F10 mouse melanoma cell을 이용하여 tyrosinase, MITF, TRP-1, TRP-2 그리고 melanin synthesis의 저해를 확인하였고, 만형자 ethyl acetate 분획물(VR-EA)을 처리하였을 때 농도의존적으로 감소한다는 것을 알 수 있었다. 특히, VR-EA는 tyrosinase와 TRP-1의 경우 각각 53.2, 88.4%의 저해율을 보여 미백에 있어서 효과적인 활성을 보여주었다. 따라서 만형자는 melanin synthesis를 효과적으로 막아주어 미백소재로서 활용 가능성이 충분하다고 사료된다.

새로운 반응기구에 의한 bradykinin 유사물의 합성 (Synethesis of bradykinin analogues by new reaction vessel)

  • 최청
    • Applied Biological Chemistry
    • /
    • 제34권4호
    • /
    • pp.334-338
    • /
    • 1991
  • 고상법으로 새로운 반응기구에 의한 bradykinin 및 $(D-Phe7\;-Leu^8)$ bradykinin을 합성하였다. Coupling은 N, N'-dicyclohexylcarbodiimide로 행하였으며 HBr 용액으로 cleavage한 후 조펩티드는 high pressure liquid chromatography로 정제하였다. 이들 펩티드의 순도는 paper chromatography, thin layer chromatography, paper electrophoresis, 융점측정기 및 아미노산기분석기에 의하여 분석하였다. Endopeptidase인 ${\alpha}-chymotrypsin$과 trysin, exopeptidase인 carboxypeptidase A와 leucine aminopeptidase를 사용하여 in vitro 상에서 이들 펩티드의 분해실험을 하였다. ${\alpha}-Chymotrypsine$ 및 carboxypeptidase A에 의하여 이들 펩티드는 빠르게 분해하였으나 leucine aminopeptidase는 N-말단의 2번 위치에 proline의 imino결합 때문에 분해하지 않았다.

  • PDF

High-concentration Epigallocatechin Gallate Treatment Causes Endoplasmic Reticulum Stress-mediated Cell Death in HepG2 Cells

  • Ahn, Joon-Ik;Jeong, Kyoung-Ji;Ko, Moon-Jeong;Shin, Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • 제7권2호
    • /
    • pp.97-106
    • /
    • 2009
  • Epigallocatechin gallate (EGCG), a well-known antioxidant molecule, has been reported to cause hepatotoxicity when used in excess. However, the mechanism underlying EGCG-induced hepatotoxicity is still unclear. To better understand the mode of action of EGCG-induced hepatotoxicity, we examined the effect of EGCG on human hepatic gene expression in HepG2 cells using microarrays. Analyses of microarray data revealed more than 1300 differentially expressed genes with a variety of biological processes. Upregulated genes showed a primary involvement with protein-related biological processes, such as protein synthesis, protein modification, and protein trafficking, while downregulated genes demonstrated a strong association with lipid transport. Genes involved in cellular stress responses were highly upregulated by EGCG treatment, in particular genes involved in endoplasmic reticulum (ER) stress, such as GADD153, GADD34, and ATF3. In addition, changes in genes responsible for cholesterol synthesis and lipid transport were also observed, which explains the high accumulation of EGCG-induced lipids. We also identified other regulatory genes that might aid in clarifying the molecular mechanism underlying EGCG-induced hepatotoxicity.

Synthesis of New Uraci1-5-Sulphonamide-p-Phenyl Derivatives and Their Effect on Biomphalaria alexandrina Snail's Nucleoproteins

  • Fathalla, O.A.;Gad, H.S.M.;Maghaby, A.S.
    • Archives of Pharmacal Research
    • /
    • 제23권2호
    • /
    • pp.128-138
    • /
    • 2000
  • In continuation of the previous work (Fathalla, 1992) on the synthesis of some heterocycles containing uracil moiety, we report herein the incorporation of uracil moiety into cyan-opyridine thione, thiosemecarbazone, semicarbazone, cyanopyridine, ami nocyano pyridine, isoxazoline, pyrazoline, pyrimidine, triazolo pyrimidine, pyran, selena and thiazole derivatives which might modify their biological activities. The biological studies revealed that the chemical compound III f showed high molluscicdal activity than other compounds. The profile of the nucleoprotein extracted from chemically (compound IIIc, e, f and g) treated or UV-irradiated B.alexandrina snails did not show appreciable differences when compared to non-treated (native) snails by using SDS-PAGE, where no obvious qualitative or quantitative differences were observed. Immunization of experimental animals with the nucleoprotein extracted from native, chemically (compound III f & g) treated or physically treated B.alexandrina snails induced significant protection against challenge with normal S.mansoni cercariae, as compared to the non-immunized challenged control. As well as , a decrease in the number of granuloma formation and the size range of granuloma was also observed in immunized animals. It is concluded that, compounds III f and g have a potent molluscicidal activity. They also induced chemical modification comparable to that induced by physical treatment in the snail's nucleoprotein, which could possibly be used in immunization against S. mansoni infection.

  • PDF

Biological Synthesis of Alkyne-terminated Telechelic Recombinant Protein

  • Ayyadurai, Niraikulam;Kim, So-Yeon;Lee, Sun-Gu;Nagasundarapandian, Soundrarajan;Hasneen, Aleya;Paik, Hyun-Jong;An, Seong-Soo;Oh, Eu-Gene
    • Macromolecular Research
    • /
    • 제17권6호
    • /
    • pp.424-429
    • /
    • 2009
  • In this study, we demonstrate that the biological unnatural amino acid incorporation method can be utilized in vivo to synthesize an alkyne-terminated telechelic protein, Synthesis of terminally-functionalized polymers such as telechelic polymers is recognized to be important, since they can be employed usefully in many areas of biology and material science, such as drug delivery, colloidal dispersion, surface modification, and formation of polymer network. The introduction of alkyne groups into polymeric material is particularly interesting since the alkyne group can be a linker to combine other materials using click chemistry. To synthesize the telechelic recombinant protein, we attempted to incorporate the L-homopropargylglycine into the recombinant GroES fragment by expressing the recombinant gene encoding Met at the codons for both N- and C-terminals of the protein in the Met auxotrophic E. coli via Hpg supplementation. The Hpg incorporation rate was investigated and the incorporation was confirmed by MALDI-TOF analysis of the telcchelic recombinant protein.

Purification and Characterization of an Antiviral Ribosome-inactivating Protein from Chenopodium album L.

  • Cho, Kang-Jin;Lee, Si-Myung;Kim, Yeong-Tae;Hwang, Young-Soo
    • Journal of Applied Biological Chemistry
    • /
    • 제43권3호
    • /
    • pp.125-130
    • /
    • 2000
  • An antiviral protein (CAP30) with ribosome-inactivating activity was purified from the leaves of Chenopodium album L. through ammonium sulfate precipitation and column chromatography using S-Sepharose, Blue-Sepharose, FPLC Suprose12 HR, and FPLC Mono-S. The molecular wight of CAP30 was estimated to be 30kD. CAP30 was thermostable, maintaing its activity even after incubation at $70^{\circ}C$ for 30 min, and was stable in the pH range of 6 to 9. In a cell-free in vitro translation system using rabbit reticulocyte lysate, protein synthesis was inhibited by the addition of CAP30 with an $IC_{50}$ of 2.26pM. The comparison of N-terminal amino acid sequences of this protein with known ribosome-inactivating proteins (RIPs) revealed that it had some sequence homology with PAP-S and PAP-R from pokeweed (Phytolacca americana)and dodecandrin from P. dodecandra, but had no sequence homology with RIPs from other plants belonging to different orders. The mosaic symptoms on tobacco leaves caused by cucumber mosaic virus infection was completely inhibited by 100 ng/ml of the pure CAP30 protein.

  • PDF