• Title/Summary/Keyword: Biological Synthesis

Search Result 1,242, Processing Time 0.028 seconds

Effect of Chicory Extract on Triglyceride Metabolism in Rats (흰쥐의 중성지질 대사에 미치는 치커리 추출물의 영향)

  • Cha Jae-Young;Park Chae-Kyu;Kang Ho Young;Cho Young-Su
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.613-618
    • /
    • 2005
  • We investigated the effect of chicory (Chicorium intybus) extract on triglyceride concentration and microsomal triglyceride transfer protein (MTP) activity in rats. The effect of water-soluble extract of chicory fed at the $2.0\%\;and\;4.0\%(w/w)$ levels for 2 weeks on the concentration of serum triglyceride and the activity of hepatic microsomal riglyceride transfer protein (MTP) was investigated in male Sprague-Dawley rats. The triglyceride concentrations in serum of the chicory extract fed groups were significantly lower than in the control group. MTP activity, known to be essential for the assembly/secretion of apolipoprotein B-containing lipoproteins, was also significantly lower in the chicory extract groups than in the control group. The concentrations of other lipids in serum and liver and the activity of phosphatidate phosphohydrolase, the rate-limiting enzyme in triglyceride synthesis, showed no significant differences among in the chicory fed groups. These results indicate that dietary chicory extract decrease hepatic MTP activity and serum triglyceride concentration, and therefore reduces hepatic lipoprotein assembly and secretion.

Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique

  • Gurung, Rit Bahadur;Gong, So Youn;Dhakal, Dipesh;Le, Tuoi Thi;Jung, Na Rae;Jung, Hye Jin;Oh, Tae Jin;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1639-1648
    • /
    • 2017
  • Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, anti-inflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP-${\alpha}-{\text\tiny{D}}$-glucose or UDP-${\alpha}-{\text\tiny{D}}$-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'-O-${\beta}$-glucoside, curcumin 4',4"-di-O-${\beta}$-glucoside, curcumin 4'-O-${\beta}$-2-deoxyglucoside, and curcumin 4',4"-di-O-${\beta}$-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'-O-${\beta}$-glucoside and curcumin 4'-O-${\beta}$-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.

Biological Activities of Cosmetic Material from Ten Kinds of Flower Ethanol Extracts (화장품 소재로서의 꽃 10 종 에탄올추출물 생리활성 특성연구)

  • Lee, Tae Bum;So, Yang Kang;Kim, Se Yul;Hwang, Ji Young
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.260-275
    • /
    • 2020
  • Background: We investigated the antioxidant, anti-wrinkles, whitening, and moisturizing properties and amounts of phenolic compounds of ethanol extracts from flowers of 10 resource plants from Namwon and Mt. Jiri., Korea. Methods and Results: We measured antioxidant efficacy based on the total polyphenol, and total flavonoid content, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. We evaluated the inhibitory effect on melanin synthesis and tyrosinase activity for the whitening effect. Furthermore, we analyzed the elastase and matrix metalloproteinase-1 (MMP-1) inhibition activity for anti-wrinkle capacity. To evaluate the moisturizing effect, we examined hyaluronan synthase (HAS) mRNA expression. In addition, the 19 phenolic compounds were detected using high performace liquid chromatography (HPLC). Among the 10 flowers, the antioxidant effect was high in the order of Rosa multiflora, Nelumbo nucifera, and Elsholtzia splendens. Whitening effect was high in the order of N. nucifera, R. multiflora, and Dendranthema zawadskii. As for the anti-wrinkle property, N. nucifera was the most effective followed by R. multiflora. Taraxacum coreanum was the best for moisturizing effect, followed by D. zawadskii, and E. splendens. Seven phenolic compounds were detected in the extracts of the 10 flowers. Conclusions: Overall, the extracts of five flowers extracts showed strong potential as antioxidant, whitening, anti-wrinkle, and moisturizing functional cosmetic agents.

Functional Implication of the tRNA Genes Encoded in the Chlorella Virus PBCV-l Genome

  • Lee, Da-Young;Graves, Michael V.;Van Etten, James L.;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.334-342
    • /
    • 2005
  • The prototype Chlorella virus PBCV-l encodes 11 tRNA genes and over 350 protein-encoding genes in its 330 kbp genome. Initial attempts to overexpress the recombinant A189/192R protein, a putative virus attachment protein, in E. coli strain BL21(DE3) SI were unsuccessful, and multiple protein bands were detected on Western blots. However, the full-length A189/192R recombinant protein or fragments derived from it were detected when they were expressed in E. coli BL21 CodonPlus (DE3) RIL, which contains extra tRNAs. Codon usage analysis of the a189/192r gene showed highly biased usage of the AGA and AVA codons compared to genes encoded by E. coli and Chlorella. In addition, there were biases of XXA/U($56\%$) and XXG/ C($44\%$) in the codons recognized by the viral tRNAs, which correspond to the codon usage bias in the PBCV-1 genome of XXA/U ($63\%$) over those ending in XXC/G ($37\%$). Analysis of the codon usage in the major capsid protein and DNA polymerase showed preferential usage of codons that can be recognized by the viral tRNAs. The Asn (AAC) and Lys (AAG) codons whose corresponding tRNA genes are duplicated in the tRNA gene cluster were the most abundant (i.e., preferred) codons in these two proteins. The tRNA genes encoded in the PBCV-l genome seem to play a very important role during the synthesis of viral proteins through supplementing the tRNAs that are frequently used in viral proteins, but are rare in the host cells. In addition, these tRNAs would help the virus to adapt to a wide range of hosts by providing tRNAs that are rare in the host cells.

Skin Hydration and Collagen Synthesis of AF-343 in HS68 Cell Line and NC/Nga Mice by Filaggrin Expression and Suppression of Matrix Metallopreteinase

  • Cho, Jae-We;Jeong, Yeon-Su;Han, Ji-Won;Chun, Young-Jin;Kim, Hyun-Kyu;Kim, Min-Young;Kim, Beom-Joon;Park, Ki-Moon;Kim, Jong-Keun;Kim, Jae-Hyun;Cho, Soo-Muk
    • Toxicological Research
    • /
    • v.27 no.4
    • /
    • pp.225-229
    • /
    • 2011
  • Extract of Taraxacum platycarpum (AF-343) has been reported to have several biological properties such as skin hydration and anti-inflammatory effects. Although clinical evidences of skin hydration and antiinflammatory effect were proven in clinical trial, precise mechanism of skin hydration was not fully understood yet. In this study, we have focused skin hydration mechanism related filaggrin, collagen, and matrix metalloproteinase (MMP) in vitro and animal study. Herein, skin hydration mechanism of AF-343 is due to recovery of filaggrin in mice model and increased production of collagen with suppression of matrix MMP in vitro fibroblast cell line.

Sources and Variations of Extracellular Enzymes in a Wetland Soil (습지 토양에서 체외효소의 근원과 변화)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.326-330
    • /
    • 2002
  • A wetland soil was sterilised by two methods and changes in microbial enzyme activities were assessed. The short-term effects were determined by toluene addition, while the longer-term effects of elimination was monitored by ${\gamma}$-radiation. The changes in ${\beta}$- glucosidase, ${\beta}$-xylosidase, cellobiohydrolase, phosphatase, arylsulphatase, and N-acetylglucosaminidase activities were determined by using methylumbelliferyl model substrates and comparing with the activities of control samples. Toluene addition induced different responses of enzymes. For example, phosphatase activity increased by the treatment while ${\beta}$-glucosidase and arylsulphatase activities decreased. In contrast, ${\gamma}$-radiation decreased all enzyme activities compared to control by 40-80%. The overall results of the toluene and ${\gamma}$-radiation experiments indicate that the large amounts of enzymes are stabilised outside of living cells, at least in the short term, but that the persistence of enzymes is maintained by de-novo synthesis of microbes.

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young;Sudduth, Kenneth-A.;Kitchen, Newell-R.;Fraisse, Clyde-W.;Palm, Harlan-L.;Wiebold, William-J.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.175-188
    • /
    • 2004
  • The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.

Production of Bio-Based Isoprene by the Mevalonate Pathway Cassette in Ralstonia eutropha

  • Lee, Hyeok-Won;Park, Jung-Ho;Lee, Hee-Seok;Choi, Wonho;Seo, Sung-Hwa;Anggraini, Irika Devi;Choi, Eui-Sung;Lee, Hong-Weon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1656-1664
    • /
    • 2019
  • Isoprene has the potential to replace some petroleum-based chemicals and can be produced through biological systems using renewable carbon sources. Ralstonia eutropha can produce value-added compounds, including intracellular polyhydroxyalkanoate (PHA) through fatty acid and lipid metabolism. In the present study, we engineered strains of R. eutropha H16 and examined the strains for isoprene production. We optimized codons of all the genes involved in isoprene synthesis by the mevalonate pathway and manipulated the promoter regions using pLac and pJ5 elements. Our results showed that isoprene productivity was higher using the J5 promoter ($1.9{\pm}0.24{\mu}g/l$) than when using the lac promoter ($1.5{\pm}0.2{\mu}g/l$). Additionally, the use of three J5 promoters was more efficient ($3.8{\pm}0.18{\mu}g/l$) for isoprene production than a one-promoter system, and could be scaled up to a 5-L batch-cultivation from a T-flask culture. Although the isoprene yield obtained in our study was insufficient to meet industrial demands, our study, for the first time, shows that R. eutropha can be modified for efficient isoprene production and lays the foundation for further optimization of the fermentation process.

Rhodanthpyrone A and B play an anti-inflammatory role by suppressing the nuclear factor-κB pathway in macrophages

  • Kim, Kyeong Su;Han, Chang Yeob;Han, Young Taek;Bae, Eun Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.493-499
    • /
    • 2019
  • Macrophage-associated inflammation is crucial for the pathogenesis of diverse diseases including metabolic disorders. Rhodanthpyrone (Rho) is an active component of Gentiana rhodantha, which has been used in traditional Chinese medicine to treat inflammation. Although synthesis procedures of RhoA and RhoB were reported, the biological effects of the specific compounds have never been explored. In this study, the anti-inflammatory activity and mechanisms of action of RhoA and RhoB were studied in lipopolysaccharide (LPS)-stimulated macrophages. Pretreatment with RhoA and RhoB decreased inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW 264.7 cells and in thioglycollate-elicited mouse peritoneal macrophages. In addition, it downregulated transcript levels of several inflammatory genes in LPS-stimulated RAW 264.7 cells, including inflammatory cytokines/chemokines (Tnfa, Il6, and Ccl2) and inflammatory mediators (Nos2 and Ptgs2). Macrophage chemotaxis was also inhibited by treatment with the compounds. Mechanistic studies revealed that RhoA and RhoB suppressed the nuclear factor $(NF)-{\kappa}B$ pathway, but not the canonical mitogen activated protein kinase pathway, in LPS-stimulated condition. Moreover, the inhibitory effect of RhoA and RhoB on inflammatory gene expressions was attenuated by treatment with an $NF-{\kappa}B$ inhibitor. Our findings suggest that RhoA and RhoB play an anti-inflammatory role at least in part by suppressing the $NF-{\kappa}B$ pathway during macrophage-mediated inflammation.

Transition Metal Complexes Derived From 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide Synthesis, Structural Characterization, and Biological Activities

  • Alhakimi, Ahmed N.;Shakdofa, Mohamad M.E.;Saeed, S. El-Sayed;Shakdofa, Adel M.E.;Al-Fakeh, Maged S.;Abdu, Ashwaq M.;Alhagri, Ibrahim A.
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.93-105
    • /
    • 2021
  • Mononuclear Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Fe(III), Ru(III), and UO2(II) complexes of 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide (H2L) were prepared by direct method. The ligand and its complexes were isolated in solid state and characterized by analytical techniques such as elemental and thermal analyses, molar conductance, magnetic susceptibility measurements and spectroscopic techniques such as UV-Visible, IR, 1H-NMR and 13C-NMR. The spectral data indicated that the ligand acted as neutral/monobasic bidentate or monobasic/dibasic tridentate ligand bonded to the metal ions through the oxygen atom of ketonic or enolic carbonyl group, azomethine nitrogen atom and deprotonated/protonated phenolic oxygen atom forming either tetragonally distorted octahedral or octahedral. Antimicrobial activities of the ligand and its complexes were evaluated against Escherichia coli, Bacillus subtilis and Aspergillus niger by well diffusion method. The results of antifungal activity showed that the Fe(III) complex (10) exhibited higher antifungal against Aspergillus niger than the other complexes. However, the results of antibacterial activity revealed that Cu(II) complex (4) is the most active against Escherichia coli while the Cu(II) complex (5) and Fe(III) complex (10) exhibited higher antibacterial effect on Bacillus subtilis than the other complexes.