Browse > Article
http://dx.doi.org/10.4014/jmb.1701.01054

Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique  

Gurung, Rit Bahadur (Department of Life Science and Biochemical Engineering, Sun Moon University)
Gong, So Youn (Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University)
Dhakal, Dipesh (Department of Life Science and Biochemical Engineering, Sun Moon University)
Le, Tuoi Thi (Department of Life Science and Biochemical Engineering, Sun Moon University)
Jung, Na Rae (Department of Life Science and Biochemical Engineering, Sun Moon University)
Jung, Hye Jin (Department of Life Science and Biochemical Engineering, Sun Moon University)
Oh, Tae Jin (Department of Life Science and Biochemical Engineering, Sun Moon University)
Sohng, Jae Kyung (Department of Life Science and Biochemical Engineering, Sun Moon University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.9, 2017 , pp. 1639-1648 More about this Journal
Abstract
Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, anti-inflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP-${\alpha}-{\text\tiny{D}}$-glucose or UDP-${\alpha}-{\text\tiny{D}}$-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'-O-${\beta}$-glucoside, curcumin 4',4"-di-O-${\beta}$-glucoside, curcumin 4'-O-${\beta}$-2-deoxyglucoside, and curcumin 4',4"-di-O-${\beta}$-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'-O-${\beta}$-glucoside and curcumin 4'-O-${\beta}$-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.
Keywords
Curcumin glucosides; one-pot multienzyme glycosylation; biological activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ak T, Gulcin I. 2008. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174: 27-37.   DOI
2 Lal J, Gupta SK, Thavaselvam D, Agarwal DD. 2012. Design, synthesis, synergistic antimicrobial activity and cytotoxicity of 4-aryl substituted 3,4-dihydropyrimidinones of curcumin. Bioorg. Med. Chem. Lett. 22: 2872-2876.   DOI
3 Mishra S, Karmodiya K, Surolia N, Surolia A. 2008. Synthesis and exploration of novel curcumin analogues as anti-malarial agents. Bioorg. Med. Chem. 16: 2894-2902.   DOI
4 Le TT, Pandey RP, Gurung RB, Dhakal D, Sohng JK. 2014. Efficient enzymatic systems for synthesis of novel ${\alpha}$-mangostin glycosides exhibiting antibacterial activity against grampositive bacteria. Appl. Microbiol. Biotechnol. 98: 8527-8538.   DOI
5 Lepak A, Gutmann A, Kulmer ST, Nidetzky B. 2015. Creating a water-soluble resveratrol-based antioxidant by site-selective enzymatic glucosylation. ChemBioChem 16: 1870-1874.   DOI
6 Dhakal D, Sohng JK. 2017. Coalition of biology and chemistry for ameliorating antimicrobial drug discovery. Front. Microbiol. 8: 734.   DOI
7 Langenhan JM, Peters NR, Guzei IA, Hoffmann FM, Thorson JS. 2005. Enhancing the anticancer properties of cardiac glycosides by neoglycorandomization. Proc. Natl. Acad. Sci. USA 102: 12305-12310.   DOI
8 Ahmed A, Peters NR, Fitzgerald MK, Watson JA, Hoffmann FM, Thorson JS. 2006. Colchicine glycorandomization influences cytotoxicity and mechanism of action. J. Am. Chem. Soc. 128: 14224-14225.   DOI
9 Dhakal D, Sohng JK. 2015. Commentary: toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front. Microbiol. 6: 727.
10 Chainani-Wu N. 2003. Safety and anti-inflammatory activity of curcumin: a component of turmeric (Curcuma longa). Altern. Complement. Med. 9: 161-168.   DOI
11 Singh RK, Rai D, Yadav D, Bhargava A, Balzarini J, De Clercq E. 2010. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. Eur. J. Med. Chem. 45: 1078-1086.   DOI
12 Ruby AJ, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R. 1995. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 94: 79-83.   DOI
13 Aggarwal S, Takada Y, Singh S, Myers JN, Aggarwal BB. 2004. Inhibition of growth and survival of human head and neck squamous cell carcinoma cells by curcumin via modulation of nuclear factor-${\kappa}B$ signaling. Int. J. Cancer 111:679-692.   DOI
14 Yano S, Terai M, Shimizu KL, Futagami Y, Horie S, Tsuchiya S, et al. 2000. Antiallergic activity of Curcuma longa. (II). Features of inhibitory actions on histamine release from mast cells. Nat. Med. (Tokyo) 54: 325-329.
15 Girish C, Pradhan SC. 2012. Hepatoprotective activities of picroliv, curcumin, and ellagic acid compared to silymarin on carbon-tetrachloride-induced liver toxicity in mice. J. Pharmacol. Pharmacother. 3: 149-155.
16 Vijayakumar GR, Divakar S. 2005. Amyloglucosidase-catalysed synthesis of curcumin-bis-alpha-D-glucoside, a response surface methodology study. Biotechnol. Lett. 27: 1411-1415.   DOI
17 Kaminaga Y, Nagatsu A, Akiyama T, Sugimoto N, Yamazaki T, Maitani T, et al. 2003. Molecular cloning and characterization of a glucosyltransferase catalyzing glucosylation of curcumin in cultured Catharanthus roseus cells. FEBS Lett. 555: 311-316.   DOI
18 Dhakal D, Le TT, Pandey RP, Jha AK, Gurung RB, Parajuli P, et al. 2015. Enhanced production of nargenicin A(1) and generation of novel glycosylated derivatives. Appl. Biochem. Biotechnol. 175: 2934-2949.   DOI
19 Shin JY, Pandey RP, Jung HY, Chu LL, Park YI, Sohng JK. 2016. In vitro single-vessel enzymatic synthesis of novel Resvera-A glucosides. Carbohydr. Res. 424: 8-14.   DOI
20 Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. 2007. Bioavailability of curcumin: problems and promises. Mol. Pharm. 4: 807-818.   DOI
21 Priyadarsini KI. 2013. Chemical and structural features influencing the biological activity of curcumin. Curr. Pharm. Des. 19: 2093-2100.
22 Masada S, Kawase Y, Nagatoshi M, Oguchi Y, Terasaka K, Mizukami H. 2007. An efficient chemoenzymatic production of small molecule glucosides with in situ UDP-glucose recycling. FEBS Lett. 581: 2562-2566.   DOI
23 Zlotogorski A, Dayan A, Dayan D, Chaushu G, Salo T, Vered M. 2013. Nutraceuticals as new treatment approaches for oral cancer - I: curcumin. Oral Oncol. 49: 187-191.   DOI
24 Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, et al. 1991. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 83: 757-766.   DOI
25 Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. 2013. Multitargetting by tumeric, the golden spice: from kitchen to clinic. Mol. Food Res. 57: 1510-1528.   DOI
26 Kim M, Kim Y. 2010. Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr. Res. Pract. 4: 191-195.   DOI
27 Altenburg JD, Bieberich AA, Terry C, Harvey KA, Vanhorn JF, Xu Z, et al. 2011. A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone. BMC Cancer 11: 149.   DOI
28 Du Q, Hu B, An HM, Shen KP, Xu L, Deng S, et al. 2013. Synergistic anticancer effects of curcumin and resveratrol in Hepa1-6 hepatocellular carcinoma cells. Oncol. Rep. 29: 1851-1858.   DOI
29 Sreenivasan S, Krishnakumar S. 2015. Synergistic effect of curcumin in combination with anticancer agents in human retinoblastoma cancer cells lines. Curr. Eye Res. 40: 1153-1165.   DOI
30 Guzzarlamudi S, Singh PK, Pawar VK, Singh Y, Sharma K, Paliwal SK, et al. 2016. Synergistic chemotherapeutic activity of curcumin bearing methoxypolyethylene glycol-g-linoleic acid based micelles on breast cancer cells. Nanosci. Nanotechnol. 16: 4180-4190.   DOI
31 Shehzad A, Lee J, Lee JS. 2013. Curcumin in various cancers. Biofactors 39: 56-68.   DOI
32 Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, et al. 2015. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med. 10: 1615-1623.   DOI
33 Bubb WA. 2003. NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity, pp. 1-19. In Traficante DD (ed.), Concepts in Magnetic Resonance Part A, Vol. 19A. John Wiley & Sons, Inc., New Jersey.
34 Terasaka K, Misutani Y, Nagatsu A, Mizukami H. 2012. In situ UDP-glucose regeneration unravels diverse functions of plant secondary product glycosyltransferases. FEBS Lett. 586: 4344-4350.   DOI
35 Mohri K, Watanabe Y, Yoshida Y, Satoh M, Isobe K, Suqimoto N, et al. 2003. Synthesis of glycosylcurcuminoids. Chem. Pharm. Bull. (Tokyo) 51: 1268-1272.   DOI
36 Masada S, Kawase Y, Nagatoshi M, Oguchi Y, Terasaka K, Mizukami H. 2007. An efficient chemoenzymatic production of small molecule glucosides with in situ UDP-glucose recycling. FEBS Lett. 581: 2562-2566.   DOI
37 Amann S, Drager G, Rupprath C, Kirschning A, Elling L. 2001. (Chemo)enzymatic synthesis of dTDP-activated 2,6- dideoxysugars as building blocks of polyketide antibiotics. Carbohydr. Res. 335: 23-32.   DOI
38 Oh J, Lee SG, Kim BG, Sohng JK, Liou KK, Lee HC. 2003. One-pot enzymatic production of dTDP-4-keto-6-deoxy-Dglucose from dTMP and glucose-1-phosphate. Biotechnol. Bioeng. 84: 452-458.   DOI
39 Kaminaga Y, Sahin FP, Mizukami H. 2004. Molecular cloning and characterization of a glucosyltransferase catalyzing glucosylation of curcumin in cultured Catharanthus roseus cells. FEBS Lett. 567: 197-202.   DOI
40 Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C. 2001. Comparison of the intestinal absorption of quercetin, phloretin and their glucosides in rats. J. Nutr. 131: 2109-2114.   DOI
41 Kapoor N, Narain U, Misra K. 2007. Bioactive conjugates of curcumin having ester, peptide, thiol and disulphide links. J. Sci. Ind. Res. 66: 647-650.
42 Trujillo J, Chirino YI, Molina-Jijon E, Andérica-Romero AC, Tapia E, Pedraza-Chaverri J. 2013. Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol. 1: 448-456.   DOI
43 Parvathy KS, Negi PS, Srinivas P. 2009. Antioxidant, antimutagenic and antibacterial activities of curcumin-${\beta}$-diglucoside. Food Chem. 115: 265-271.   DOI
44 Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. 2007. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28: 1765-1773.   DOI
45 Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol. Pharm. Bull. 30: 74-78.
46 Sugiyama Y, Kawakishi S, Osawa T. 1996. Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem. Pharmacol. 52: 519-525.   DOI
47 Ahmad MZ, Alkahtani SA, Akhter S, Ahmad FJ, Ahmad J, Akhtar MS, et al. 2015. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art. J. Drug Target. 11: 1-21.
48 Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. 2013. Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol. Ind. Health 32: 246-250.
49 Mun SH, Joung DK, Kim SH, Kang OH, Kim SB, Seo YS, et al. 2013. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 20: 714-718.   DOI
50 Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. 2014. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed. Res. Int. 2014: 12.
51 Prasad E, Hameeda B, Rao AB, Reddy G. 2014. Biotransformation of curcumin for improved biological activity and antiproliferative activity on acute HT-29 human cell lines. Indian J. Biotechnol. 13: 324-329.
52 Rai D, Singh JK, Roy N, Panda D. 2008. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem. J. 410: 147-155.   DOI
53 Yun DG, Lee DG. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl. Microbiol. Biotechnol. 100: 5505-5514.
54 Liang G, Shao L, Wang Y, Zhao C, Chu Y, Xiao J, et al. 2009. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem. 17: 2623-2631.   DOI
55 Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, et al. 1997. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 15: 1867-1876.   DOI
56 Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, Tekmal RR, et al. 2010. Bioavailability of curcumin: problems and promises. Biochem. Pharmacol. 79: 330-338.   DOI
57 Lian T, Peng M, Vermorken AJ, Jin Y, Luo Z, Van de Ven WJ, et al. 2016. Synthesis and characterization of curcuminfunctionalized HP-${\beta}$-CD-modified GoldMag nanoparticles as drug delivery agents. J. Nanosci. Nanotechnol. 16: 6258-6264.   DOI
58 Chen CC, Sureshbabul M, Chen HW, Lin YS, Lee JY, Hong QS, et al. 2013. Curcumin suppresses metastasis via Sp-1, FAK inhibition, and E-cadherin upregulation in colorectal cancer. Evid. Based Complement. Alternat. Med. 2013: 541695.
59 Lombo F, Olano C, Salas JA, Mendez C. 2009. Sugar biosynthesis and modification, pp. 277-308. In Abelson JN, Simon MI (eds.), Methods in Enzymology. Academic Press, San Diego.
60 Wilken R, Veena MS, Wang MB, Srivatsan ES. 2011. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10: 12.   DOI