• Title/Summary/Keyword: Biological Signal

Search Result 1,262, Processing Time 0.023 seconds

An Efficient Smart Indoor Emotional Lighting Control System based on Android Platform using Biological Signal (생체신호를 이용한 안드로이드 플랫폼 기반의 효율적인 스마트 실내 감성조명 제어 시스템)

  • Yun, Su-Jeong;Hong, Sung-IL;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.199-207
    • /
    • 2016
  • In this paper, we propose efficient smart indoor emotional lighting control system based on android platform using the biological signal. The proposed smart indoor smart emotional lighting control system were configured as the biological signal measurement device and removable smart wall pad, lighting driver, luminaire. The control system was extracts the emotional language by measured the biological signal, and it was transmitted a control signal to each lighting driver using a bluetooth in the wall pad. The lighting driver were designed to control the lighting device through an expansion board by collected control signal and the illuminance information the surrounding. In this case, the wall pad can be selecting of manual control and the bio signal mode by that indoor emotional lighting control algorithms, and it was implemented the control program that possible to partial control by selecting the wanted light. Experiment results of the proposed smart indoor emotional lighting control system, it were possible to the optional control about the luminaire of required area, and the manual control by to adjustable of color temperature with that the efficiently adjustable of lighting by to biological signal and emotional language. Therefore, were possible to effective control for improvement of concentration and business capability of indoor space business conduct by controlling the color and brightness that is appropriate for your situation. And, was reduced power consumption and dimmer voltage, lighting-current than the existing-emotional lighting control system.

Computer Application to ECG Signal Processing

  • Okajima, Mitsuharu
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.13-14
    • /
    • 1985
  • We have developed a microprogramir!able signal processor for real-time ultrasonic signal processing. Processing speed was increased by the parallelism in horizontal microprogram using 104bits microcode and the Pipelined architecture. Control unit of the signal processor was designed by microprogrammed architec- ture and writable control store (WCS) which was interfaced with host computer, APPLE- ll . This enables the processor to develop and simulate various digital signal processing algorithms. The performance of the processor was evaluated by the Fast Fourier Transform (FFT) program. The execution time to perform 16 bit 1024 points complex FF7, radix-2 DIT algorithm, was about 175 msec with IMHz master Clock. We can use this processor to Bevelop more efficient signal processing algorithms on the biological signal processing.

  • PDF

Biological Signal Measurements in SiMACS (SiMACS에서의 생체신호 수집)

  • Lim, J.J.;Choi, Y.S.;Kim, D.H.;Kim, E.J.;Lee, H.J.;Woo, E.J.;Park, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.53-56
    • /
    • 1994
  • We have developed biological signal measurement modules and data acquisition and control card for a biological signal measurement, archiving, and communication system (SiMACS). Biological signals included in this system are ECG, EEG, EMG, invasive blood pressure, respiration, and temperature. Parameters of each module can be controlled by PC-base IDPU (intelligent data processing unit) through a data acquisition and control card. The data acquisition and control card can collect up to 16 channels of biological signals with sampling rate of $50\;{\sim}\;2,000Hz$ and 12-bit resolution. All measurement moduls and data acquisition functions are controlled by microcontroller which receives commands from PC. All data transfers among PC, microcontroller, and ADC are done through a shared RAM access by polling method for real rime operation.

  • PDF

Gene Microarray Assessment of Multiple Genes and Signal Pathways Involved in Androgen-dependent Prostate Cancer Becoming Androgen Independent

  • Liu, Jun-Bao;Dai, Chun-Mei;Su, Xiao-Yun;Cao, Lu;Qin, Rui;Kong, Qing-Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9791-9795
    • /
    • 2014
  • To study the gene expression change and possible signal pathway during androgen-dependent prostate cancer (ADPC) becoming androgen-independent prostate cancer (AIPC), an LNCaP cell model of AIPC was established using flutamide in combination with androgen-free environment inducement, and differential expression genes were screened by microarray. Then the biological process, molecular function and KEGG pathway of differential expression genes are analyzed by Molecule Annotation System (MAS). By comparison of 12,207 expression genes, 347 expression genes were acquired, of which 156 were up-ragulated and 191 down-regulated. After analyzing the biological process and molecule function of differential expression genes, these genes are found to play crucial roles in cell proliferation, differntiation, cell cycle control, protein metabolism and modification and other biological process, serve as signal molecules, enzymes, peptide hormones, cytokines, cytoskeletal proteins and adhesion molecules. The analysis of KEGG show that the relevant genes of AIPC transformation participate in glutathione metabolism, cell cycle, P53 signal pathway, cytochrome P450 metabolism, Hedgehog signal pathway, MAPK signal pathway, adipocytokines signal pathway, PPAR signal pathway, TGF-${\beta}$ signal pathway and JAK-STAT signal pathway. In conclusion, during the process of ADPC becoming AIPC, it is not only one specific gene or pathway, but multiple genes and pathways that change. The findings above lay the foundation for study of AIPC mechanism and development of AIPC targeting drugs.

Noise Cancellation Algorithm of Bone Conduction Speech Signal using Feature of Noise in Separated Band (밴드 별 잡음 특징을 이용한 골전도 음성신호의 잡음 제거 알고리즘)

  • Lee, Jina;Lee, Gihyoun;Na, Sung Dae;Seong, Ki Woong;Cho, Jin Ho;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.128-137
    • /
    • 2016
  • In mobile communication, air conduction(AC) speech signal had been commonly used, but it was easily affected by ambient noise environment such as emergency, military action and rescue. To overcome the weakness of the AC speech signal, bone conduction(BC) speech signal have been used. The BC speech signal is transmitted through bone vibration, so it is affected less by the background noise. In this paper, we proposed noise cancellation algorithm of the BC speech signal using noise feature of decomposed bands. The proposed algorithm consist of three steps. First, the BC speech signal is divided into 17 bands using perceptual wavelet packet decomposition. Second, threshold is calculated by noise feature during short time of separated-band and compared to absolute average of the signal frame. Therefore, the speech and noise parts are detected. Last, the detected noise parts are removed and then, noise eliminated bands are re-synthesised. In order to confirm the efficiency of the proposed algorithm, we compared the proposed algorithm with conventional algorithm. And the proposed algorithm has better performance than the conventional algorithm.

A Study on Spectral Characteristics of Ultrasonic Signal for Tissue Attennation Coefficient Measurement (생체내의 초음파 감쇄계수를 측정하기 위한 초음파 신호스펙트럼 특성에 관한 연구)

  • Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.29-36
    • /
    • 1983
  • In this paper, center frequency down slift of ultrasonic echo signals which for the measurements of frequency dependent attenuation in the biological tissue are estimated. Center frequency down shift of echo-signals are estimated after signal spectrum analysis of whole echo-signals. In case of signal spectrums are simple, estimation of down shift frequency is very simple and in case of complicate spectrum, estimation of down shift frequency is depend on spectral shape. In case of unable to estimate, frequency dependence of medium is nonlinear(n) 1), in which upper shift of spectrums are presented. In case of unable to estimate, spectrum analysis are performed at local position. At consquence, we know that spectral dispersions are caused complicately by biological tissue layer.

  • PDF

A Study on the Detecting of Noncontact Biosignal using UWB Radar (UWB 레이더를 이용한 비접촉 생체신호 검출에 관한 연구)

  • Lee, Yonggyu;Cho, Joonggil;Kim, Taesung
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.1-6
    • /
    • 2019
  • This study relates to acquiring biological signal without attaching directly to the user using UWB(Ultra Wide Band) radar. The collected information is the respiratory rate, heart rate, and the degree of movement during sleep, and this information is used to measure the sleep state. A breathing measurement algorithm and a sleep state detection algorithm were developed to graph the measured data. Information about the sleep state will be used as a personalized diagnosis by connecting with the medical institution and contribute to the prevention of sleep related diseases. In addition, biological signal will be linked to various sensors in the era of the 4th industrial revolution, leading to smart healthcare, which will make human life more enriching.

Nuclear Localization of Chfr Is Crucial for Its Checkpoint Function

  • Kwon, Young Eun;Kim, Ye Seul;Oh, Young Mi;Seol, Jae Hong
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.359-363
    • /
    • 2009
  • Chfr, a checkpoint with FHA and RING finger domains, plays an important role in cell cycle progression and tumor suppression. Chfr possesses the E3 ubiquitin ligase activity and stimulates the formation of polyubiquitin chains by Ub-conjugating enzymes, and induces the proteasome-dependent degradation of a number of cellular proteins, including Plk1 and Aurora A. While Chfr is a nuclear protein that functions within the cell nucleus, how Chfr is localized in the nucleus has not been clearly demonstrated. Here, we show that nuclear localization of Chfr is mediated by nuclear localization signal (NLS) sequences. To reveal the signal sequences responsible for nuclear localization, a short lysine-rich stretch (KKK) at amino acid residues 257-259 was replaced with alanine, which completely abolished nuclear localization. Moreover, we show that nuclear localization of Chfr is essential for its checkpoint function but not for its stability. Thus, our results suggest that NLS-mediated nuclear localization of Chfr leads to its accumulation within the nucleus, which may be important in the regulation of Chfr activation and Chfr-mediated cellular processes, including cell cycle progression and tumor suppression.

Immunohistochemical Localization of Endogenous IAA in Peach (Prunus persica L.) Fruit during Development

  • Zhang, Wei;Li, Yang;Shi, Mengya;Hu, Hao;Hua, Baoguang;Yang, Aizhen;Liu, Yueping
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.317-325
    • /
    • 2015
  • Peach (Prunus persica L.) is a model species for stone fruit studies within the Rosaceae family. Auxin plays an important role in the development of peach fruit. To reveal the distribution of auxin in the tissues of peach fruit, immunohistochemical localization of IAA was carried out in the seed, mesocarp, and endocarp in developing peach fruit using an anti-indole-3-acetic acid (anti-IAA) monoclonal antibody. A strong IAA signal was observed throughout the outer and inner integument during peach fruit development, and the distribution was zonal. The IAA signal was mainly focused in mucilage layers in the outer integument. The outer integument may function to produce or store IAA in the seed; a strong IAA signal was detected in the cells around the vascular tissue, whereas a weak IAA signal was located in the vascular tissues. In the mesocarp, the cells around the vascular bundle tissue gave rise to an IAA signal that increased in the late phase of fruit growth, which coincided with a significant increase in fruit growth. The distribution of IAA, however, was changed when fruit was treated with auxin transport inhibitors NPA (1-N-naphthylphthalamic acid) or TIBA (2, 3, 5-triiodobenzoic acid); in mesocarp tissues, an IAA signal was detected mainly in vessels of the treated fruit. During the critical period of endocarp lignification, the vessel lignification process was negatively correlated with IAA signal. The present results confirmed that the distribution of IAA was different in various tissues of peach fruit according to the developmental stage. This research provides cytological data for further study of the regulatory mechanism of auxin in peach fruit.